Skip to main content
Log in

Differential Effects of Indole and Aliphatic Glucosinolates on Lepidopteran Herbivores

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Glucosinolates are a diverse group of defensive secondary metabolites that is characteristic of the Brassicales. Arabidopsis thaliana (L.) Heynh. (Brassicaceae) lines with mutations that greatly reduce abundance of indole glucosinolates (cyp79B2 cyp79B3), aliphatic glucosinolates (myb28 myb29), or both (cyp79B2 cyp79B3 myb28 myb29) make it possible to test the in vivo defensive function of these two major glucosinolate classes. In experiments with Lepidoptera that are not crucifer-feeding specialists, aliphatic and indole glucosinolates had an additive effect on Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) larval growth, whereas Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae) and Manduca sexta (L.) (Lepidoptera: Sphingidae) were affected only by the absence of aliphatic glucosinolates. In the case of two crucifer-feeding specialists, Pieris rapae (L.) (Lepidoptera: Pieridae) and Plutella xylostella (L.) (Lepidoptera: Plutellidae), there were no major changes in larval performance due to decreased aliphatic and/or indole glucosinolate content. Nevertheless, choice tests show that aliphatic and indole glucosinolates act in an additive manner to promote larval feeding of both species and P. rapae oviposition. Together, these results support the hypothesis that a diversity of glucosinolates is required to limit the growth of multiple insect herbivores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barth, C., and Jander, G. 2006. Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Plant J. 46:549–562.

    Article  CAS  PubMed  Google Scholar 

  • Beekwilder, J., Van Leeuwen, W., Van Dam, N. M., Bertossi, M., Grandi, V., Mizzi, L., Soloviev, M., Szabados, L., Molthoff, J. W., Schipper, B., Verbocht, H., De Vos, R. C., Morandini, P., Aarts, M. G., and Bovy, A. 2008. The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis. PLoS ONE 3:e2068.

    Article  PubMed  Google Scholar 

  • Bidart-Bouzat, M. G., and Kliebenstein, D. J. 2008. Differential levels of insect herbivory in the field associated with genotypic variation in glucosinolates in Arabidopsis thaliana. J. Chem. Ecol. 34:1026–1037.

    Article  CAS  PubMed  Google Scholar 

  • Bidart-Bouzat, M. G., Mithen, R., and Berenbaum, M. R. 2005. Elevated CO(2) influences herbivory-induced defense responses of Arabidopsis thaliana. Oecologia 145:415–424.

    Article  PubMed  Google Scholar 

  • Brader, G., Tas, E., and Palva, E. T. 2001. Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogen Erwinia carotovora. Plant Physiol. 126:849–60.

    Article  CAS  PubMed  Google Scholar 

  • Burow, M., Müller, R., Gershenzon, J., and Wittstock, U. 2006. Altered glucosinolate hydrolysis in genetically engineered Arabidopsis thaliana and its influence on the larval development of Spodoptera littoralis. J. Chem. Ecol. 32:2333–49.

    Article  CAS  PubMed  Google Scholar 

  • De Vos, M., and Jander, G. 2009. Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana. Plant Cell Env. 32:1548–1560.

    Article  CAS  Google Scholar 

  • De Vos, M., Kriksunov, K., and Jander, G. 2008. Indole-3-acetonitrile production from indole glucosinolates deters oviposition by Pieris rapae (white cabbage butterfly). Plant Physiol. 146:916–926.

    Article  CAS  PubMed  Google Scholar 

  • Del Campo, M. L., Smedley, S. R., and Eisner, T. 2005. Reproductive benefits derived from defensive plant alkaloid possession in an arctiid moth (Utetheisa ornatrix). Proc. Natl. Acad. Sci. U S A 102:13508–12.

    Article  CAS  PubMed  Google Scholar 

  • Fahey, J. W., Zalcmann, A. T., and Talalay, P. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51.

    Article  CAS  PubMed  Google Scholar 

  • Gigolashvili, T., Berger, B., Mock, H. P., Muller, C., Weisshaar, B., and Flugge, U. I. 2007a. The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant J. 56:886–890.

    Article  Google Scholar 

  • Gigolashvili, T., Yatusevich, R., Berger, B., Muller, C., and Flugge, U. I. 2007b. The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant J. 51:247–261.

    Article  CAS  PubMed  Google Scholar 

  • Glawischnig, E., Hansen, B. G., Olsen, C. E., and Halkier, B. A. 2004. Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis. Proc. Natl. Acad. Sci. U S A 101:8245–50.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, P. D., and Thorsteinson, A. J. 1960. Food plant relationship of the diamond-back moth (Plutella maculipennis (Curt.)) I. Gustation and olfaction in relation to botanical specificity of the larva. Ent. Exp. Appl. 3:241–250.

    Article  Google Scholar 

  • Halkier, B. A., and Gershenzon, J. 2006. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 57:303–333.

    Article  CAS  PubMed  Google Scholar 

  • Hansen, B. G., Kliebenstein, D. J., and Halkier, B. A. 2007. Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis. Plant J. 50:902–10.

    Article  CAS  PubMed  Google Scholar 

  • Jander, G., Cui, J., Nhan, B., Pierce, N. E., and Ausubel, F. M. 2001. The TASTY locus on chromosome 1 of Arabidopsis affects feeding of the insect herbivore Trichoplusia ni. Plant Physiol. 126:890–8.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. H., and Jander, G. 2007. Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. Plant J. 49:1008–1019.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. H., Lee, B. W., Schroeder, F. C., and Jander, G. 2008. Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid). Plant J. 54:1015–1026.

    Article  CAS  PubMed  Google Scholar 

  • Kliebenstein, D. J., Kroymann, J., Brown, P., Figuth, A., Pedersen, D., Gershenzon, J., and Mitchell-olds, T. 2001. Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol. 126:811–825.

    Article  CAS  PubMed  Google Scholar 

  • Lambrix, V., Reichelt, M., Mitchell-olds, T., Kliebenstein, D. J., and Gershenzon, J. 2001. The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Plant Cell 13:2793–807.

    Article  CAS  PubMed  Google Scholar 

  • Mauricio, R. 1998. Costs of resistance to natural enemies in field popualtions of the annual plant Arabidopsis thaliana. Am. Nat. 151:20–28.

    Article  CAS  PubMed  Google Scholar 

  • Mauricio, R., and Rausher, M. D. 1997. Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense. Evolution 51:1435–1444.

    Article  Google Scholar 

  • Mewis, I., Appel, H. M., Hom, A., Raina, R., and Schultz, J. C. 2005. Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol. 138:1149–62.

    Article  CAS  PubMed  Google Scholar 

  • Miles, C. I., Del Campo, M. L., and Renwick, J. A. 2005. Behavioral and chemosensory responses to a host recognition cue by larvae of Pieris rapae. J. Comp. Phys. A 191:147-155.

    Article  Google Scholar 

  • Pegadaraju, V., Knepper, C., Reese, J., and Shah, J. 2005. Premature leaf senescence modulated by the Arabidopsis PHYTOALEXIN DEFICIENT4 gene is associated with defense against the phloem-feeding green peach aphid. Plant Physiol. 139:1927–34.

    Article  CAS  PubMed  Google Scholar 

  • Pfalz, M., Vogel, H., and Kroymann, J. 2009. The gene controlling the indole glucosinolate modifier1 quantitative trait locus alters indole glucosinolate structures and aphid resistance in Arabidopsis. Plant Cell 21:985–99.

    Article  CAS  PubMed  Google Scholar 

  • Rasband, W. S. 1997–2007. ImageJ. National Institutes of Health, Bethesda, Maryland, USA http://rsb.info.nih.gov/ij/.

  • Ratzka, A., Vogel, H., Kliebenstein, D. J., Mitchell-olds, T., and Kroymann, J. 2002. Disarming the mustard oil bomb. Proc. Natl. Acad. Sci. U S A 99:11223–11228.

    Article  CAS  PubMed  Google Scholar 

  • Reichelt, M., Brown, P. D., Schneider, B., Oldham, N. J., Stauber, E., Tokuhisa, J., Kliebenstein, D. J., Mitchell-olds, T., and Gershenzon, J. 2002. Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry 59:663–671.

    Article  CAS  PubMed  Google Scholar 

  • Renwick, J. A. A., Radke, C. D., Sachdev-gupta, K., and Städler, E. 1992. Leaf surface chemicals stimulating oviposition by Pieris rapae (Lepidoptera: Pieridae) on cabbage. Chemoecology 3:33–38.

    Article  CAS  Google Scholar 

  • Reymond, P., Bodenhausen, N., Van Poecke, R. M., Krishnamurthy, V., Dicke, M., and Farmer, E. E. 2004. A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16:3132–3147.

    Article  CAS  PubMed  Google Scholar 

  • Rohr, F., Ulrichs, C., Mucha-pelzer, T., and Mewis, I. 2006. Variability of aliphatic glucosinolates in Arabidopsis and their influence on insect resistance. Commun. Agric. Appl. Biol. Sci. 71:507–15.

    CAS  PubMed  Google Scholar 

  • Sarfraz, M., Dosdall, L. M., and Keddie, B. A. 2006. Diamondback moth-host plant interactions: Implications for pest management. Crop Protection 25:625–639.

    Article  CAS  Google Scholar 

  • Sarosh, B. R., Wittstock, U., Halkier, B. A., and Ekbom, B. 2010. The influence of metabolically engineered glucosinolates profiles in Arabidopsis thaliana on Plutella xylostella preference and performance. Chemoecology 20:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Schlaeppi, K., Bodenhausen, N., Buchala, A., Mauch, F., and Reymond, P. 2008. The glutathione-deficient mutant pad2-1 accumulates lower amounts of glucosinolates ad is more susceptible to the insect herbivore Spodoptera litoralis. Plant J. 55:774–786.

    Article  CAS  PubMed  Google Scholar 

  • Sønderby, I. E., Hansen, B. G., Bjarnholt, N., Ticconi, C., Halkier, B. A., and Kliebenstein, D. J. 2007. A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates. PLoS ONE 2:e1322.

    Article  PubMed  Google Scholar 

  • Städler, E., Renwick, J. A. A., Radke, C. D., and Sachdev-gupta, K. 1995. Tarsal contact chemoreceptor response to glucosinolates and cardenolides mediating oviposition in Pieris rapae. Physiol. Entomol. 20:175.

    Article  Google Scholar 

  • Sun, J. Y., Sønderby, I. E., Halkier, B. A., Jander, G., and De Vos, M. 2009. Non-volatile intact indole glucosinolates are reliable host recognition cues for Plutella xylostella oviposition. J. Chem. Ecol. 35:1427–1436.

    Article  CAS  Google Scholar 

  • Thorsteinson, A. J. 1953. The chemotactic responses that determine host specificity in an oligophagous insect (Plutella maculipennis (Curt.) Lepidoptera). Can. J. Zool. 31:52–72.

    Article  CAS  Google Scholar 

  • Van Loon, J. J. A., Wang, C. Z., Nielsen, J. K., Gols, R., and Qiu, Y. T. 2002. Flavonoids from cabbage are feeding stimulants for diamondback moth larvae additional to glucosinolates: Chemoreception and behaviour. Ent. Exp. Appl. 104:27–43.

    Article  CAS  Google Scholar 

  • Verschaffelt, E. 1910. The cause determining the selection of food in some herbivorous insects. Proc. R. Acad. Amst. 13:536–542.

    Google Scholar 

  • Wittstock, U., and Halkier, B. A. 2002. Glucosinolate research in the Arabidopsis era. Trends Plant Sci. 7:263–270.

    Article  CAS  PubMed  Google Scholar 

  • Wittstock, U., and Burow, M. 2010. Glucosinolate breakdown in Arabidopsis—mechanism, regulation and biological significance. The Arabidopsis Book. Rockville: American Society of Plant Biologists. doi:10.1199/tab.0134.

    Google Scholar 

  • Wittstock, U., Agerbirk, N., Stauber, E. J., Olsen, C. E., Hippler, M., Mitchell-olds, T., Gershenzon, J., and Vogel, H. 2004. Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc. Natl. Acad. Sci. U S A 101:4859–64.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y., Hull, A. K., Gupta, N. R., Goss, K. A., Alonso, J., Ecker, J. R., Normanly, J., Chory, J., and Celenza, J. L. 2002. Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev. 16:3100–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the VKR-Research Centre for Pro-Active Plants (Villum Kahn Rasmussen’s foundation) to B.A.H., and National Science Foundation award #IOS-0718733 to G.J. We thank M. del Campo and J. Beal for providing M. sexta eggs, L. Meihls for assisting with P. xylostella experiments, and L. Heise for helping to maintain the P. rapae culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Jander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, R., de Vos, M., Sun, J.Y. et al. Differential Effects of Indole and Aliphatic Glucosinolates on Lepidopteran Herbivores. J Chem Ecol 36, 905–913 (2010). https://doi.org/10.1007/s10886-010-9825-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-010-9825-z

Key Words

Navigation