Skip to main content
Log in

Ontogeny of Tetrodotoxin Levels in Blue-ringed Octopuses: Maternal Investment and Apparent Independent Production in Offspring of Hapalochlaena lunulata

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Many organisms provision offspring with antipredator chemicals. Adult blue-ringed octopuses (Hapalochlaena spp.) harbor tetrodotoxin (TTX), which may be produced by symbiotic bacteria. Regardless of the ultimate source, we find that females invest TTX into offspring and offspring TTX levels are significantly correlated with female TTX levels. Because diversion of TTX to offspring begins during the earliest stages of egg formation, when females are still actively foraging and looking for mates, females may face an evolutionary tradeoff between provisioning larger stores of TTX in eggs and retaining that TTX for their own defense and offense (venom). Given that total TTX levels appear to increase during development and that female TTX levels correlate with those of offspring, investment may be an active adaptive process. Even after eggs have been laid, TTX levels continue to increase, suggesting that offspring or their symbionts begin producing TTX independently. The maternal investment of TTX in offspring of Hapalochlaena spp. represents a rare examination of chemical defenses, excepting ink, in cephalopods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akizawa, T., Mukai, T., Matsukawa, M., Yoshioka, M., Morris, J. F., and Butler, V. P., Jr. 1994. Structures of novel bufadienolides in the eggs of a toad, Bufo marinus. Chem. Pharm. Bull. 42:754–756.

    CAS  PubMed  Google Scholar 

  • Benard, M. F., and Fordyce, J. A. 2003. Are induced defenses costly? Consequences of predator-induced defenses in western toads, Bufo boreas. Ecology 84:68–78.

    Article  Google Scholar 

  • Bezzerides, A., Yong, T., Bezzerides, J., Husseini, J., Ladau, J., Eisner, M., and Eisner, T. 2004. Plant-derived pyrrolizidine alkaloid protects eggs of a moth (Utetheisa ornatrix) against a parasitoid wasp (Trichogramma ostriniae). Proc. Nat. Acad. Sci.USA 101:9029–9032.

    Article  CAS  PubMed  Google Scholar 

  • Biggs, J., and Epel, D. 1991. Egg capsule sheath of Loligo opalescens Berry: structure and association with bacteria. J. Exp. Zool. 259:263–267.

    Article  Google Scholar 

  • Boyle, P. R., and Chevis, D. 1992. Egg development in the octopus Eledone cirrhosa. J. Zool., London 227:623–638.

    Article  Google Scholar 

  • Cameron, D. D., Johnson, I., Read, D. J., and Leake, J. R. 2008. Giving and receiving: measuring the carbon cost of mycorrhizas in the green orchid, Goodyera repens. New Phytologist 180:176–184.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, M. W., and Caldwell, R. L. 2000. Sex identification and mating in the blue-ringed octopus, Hapalochlaena lunulata. Anim. Behav. 60:27–33.

    Article  PubMed  Google Scholar 

  • Derby, C.D., 2007. Escape by inking and secreting: marine molluscs avoid predators through a rich array of chemicals and mechanisms. Biol. Bull. 213:274–289.

    Article  CAS  PubMed  Google Scholar 

  • Eisner, T., and Meinwald, J. 1995. The chemistry of sexual selection. Proc. Nat. Acad. Sci. USA 92:50–55.

    Article  CAS  PubMed  Google Scholar 

  • Eisner, T., Eisner, M., Rossini, C., Iyengar, V. K., Roach, B. L., Benedikt, E., and Meinwald, J. 2000. Chemical defense against predation in an insect egg. Proc. Nat. Acad. Sci.USA 15:1634–1639.

    Article  Google Scholar 

  • Emelianoff, V., Chapuis, E., Le Brun, N., Chiral, M., Moulia, C., and Ferdy, J. 2008. A survival-reproduction trade-off in entomopathogenic nematodes mediated by their bacterial symbionts. Evolution 62:932–942.

    Article  PubMed  Google Scholar 

  • Froesch, D., and Marthy, H. J. 1975. The structure and function of the oviducal gland in Octopods (Cephalopoda). Proc. Royal Soc.London. Series B, Biol. Sci. 188:95–101.

    Article  CAS  Google Scholar 

  • Fuhrman, F. A., Fuhrman, G. J., Dull, D. L., and Mosher, H. S. 1969. Toxins from eggs of fishes and Amphibia. J. Agr. Food Chem. 17:417–424.

    Article  CAS  Google Scholar 

  • Furusaki, A., Tomie, Y., and Nitta, I. 1970. The crystal and molecular structure of bromoanhydrotetrodoic lactone hydrobromide. Bull. Chem. Soc. Jpn. 43:3325–3331.

    Article  CAS  Google Scholar 

  • Gladstone, W. 1987. The eggs and larvae of the Sharpnose Pufferfish Canthigaster valentini (Pices: Tetradontidae) are unpalatable to other reef fishes. Copeia 1987:227–230.

    Article  Google Scholar 

  • Goto, T., Kishi, Y., Takahashi, S., and Hirata, Y. 1965. Tetrodotoxin. XI. Tetrahedron 21:2059–2088.

    Article  CAS  PubMed  Google Scholar 

  • Häikiö, E., Makkonen, M., Julkunen-Tiitto, R., Sitte, J., Freiwald, V., Silfver, T., Pandey, V., Beuker, E., Holopainen, T., and Oksanen, E. 2009. Performance and secondary chemistry of two hybrid aspen (Populus tremula L. x Populus tremuloides Michx.) clones in long-term elevated ozone exposure. J. Chem. Ecol. 35:664–678.

    Article  PubMed  Google Scholar 

  • Hanifin, C. T., Yotsu-Yamashita, M., Yasumoto, T., Brodie, E. D. III, and Brodie, E.D., Jr. 1999. Toxicity of dangerous prey: variation of tetrodotoxin levels within and among populations of the newt Taricha granulosa. J. Chem. Ecol. 25:2161–2175.

    Article  CAS  Google Scholar 

  • Hanifin, C. T., Brodie, E. D. III, and Brodie, E. D. Jr. 2003. Tetrodotoxin levels in the eggs of the rough-skin newt, Taricha granulosa, are correlated with female toxicity. J. Chem. Ecol. 29:1729–1739.

    Article  CAS  PubMed  Google Scholar 

  • Hanlon, R. T., and Messenger, J. B. 1996. Cephabopods Behaviour. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hutchinson, D. A., Savitzky, A. H., Mori, A., Meinwald, J., and Schoeder, F. C. 2008. Maternal provisioning of sequestered defensive steroids by the Asian snake Rhabdophis tigrinus. Chemoecology 18:181–190.

    Article  CAS  Google Scholar 

  • Hwang, D. F., Arakawa, O., Saito, T., Noguchi, T., Simidu, U., Tsukamoto, K., Shida, Y., and Hashimoto, K. 1989. Tetrodotoxin-producing bacteria from the blue-ringed octopus, Octopus maculosus. Mar. Biol. 100:327–332.

    Article  CAS  Google Scholar 

  • Janzen, D. H. 1978. The ecology and evolutionary biology of seed chemistry as related to seed predation, pp. 162–206, in: J. B. Harborne (ed.). Biochemical Aspects of Plant and Animal Coevolution. Academic Press, New York.

    Google Scholar 

  • Jones, E. C. 1963. Tremoctopus violaceus uses Physalia tentacles as weapons. Science 139:764–766.

    Article  CAS  PubMed  Google Scholar 

  • Kao, C. Y. 1966. Tetrodotoxin, saxitoxin, and their significance in the study of excitation phenomena. Pharmacol. Rev. 18:997–1049.

    CAS  PubMed  Google Scholar 

  • Kaufman, M. R., Ikeda, Y., Patton, C., Van Dykhuizen, G., and Epel, G. 1998. Bacterial symbionts colonize the accessory nidamental gland of the squid Loligo opalescens via horizontal transmission. Bio. Bull. 194:36–43.

    Article  Google Scholar 

  • Kawasaki, H., Nagata, T., and Kanoh, S. 1973. An experience on the biological assay of the toxicity of imported Fugu (Tetrodon). Shokuhin Eiseigaku Zasshi 14:186–190.

    Google Scholar 

  • Kono, M., Matsui, T., Furukawa, K., Yotsu-Yamashita, M., and Yamamori, K. 2008. Accumulation of tetrodotoxin and 4,9-anhydrotetorodotoxin in cultured juvenile kusafugu Fugu niphobles by dietary administration of natural toxic komonfugu Fugu poecilonotus liver. Toxicon 51:1269–1273.

    Article  CAS  PubMed  Google Scholar 

  • Lindquist, N., and Hay, M. E. 1996. Palatability and chemical defense of marine invertebrate larvae. Ecol. Monogr. 66:431–450.

    Article  Google Scholar 

  • Lindquist, N., Hay, M. E., and Fenical, W. 1992. Defense of ascidians and their conspicuous larvae: adult vs. larval chemical defenses. Ecol. Monogr. 62:547–568.

    Article  Google Scholar 

  • Martins, C.A., Alvito, P., Tavares, M.J., Pereira, P., Doucette, G., Franca, S. 2003. Reevaluation of production of paralytic shellfish toxin by bacteria associated with dinoflagellates of the Portuguese coast. Appl. Environ. Microbiol. 69:5693.

    Article  CAS  PubMed  Google Scholar 

  • Matsui, T., Sato, H., Hamada, S., Shimizu, C. 1982. Comparison of toxicity of the cultured and wild puffer fish Fugu niphobles. Bull. Jpn. Soc. Sci. Fish. 48:253.

    Google Scholar 

  • Matsumura, K. 1995. Re-examination of tetrodotoxin production by bacteria. App. Environ. Microbiol. 61:3468–3470.

    CAS  Google Scholar 

  • Matsumura, K. 1996. Tetrodotoxin concentration in cultured puffer fish, Fugu rubripes. J. Agric. Food Chem. 44:1–2.

    Article  CAS  Google Scholar 

  • Matsumura, K. 1998. Production of tetrodotoxin in puffer fish embryos. Env. Tox. Pharm. 6:217–219.

    Article  CAS  Google Scholar 

  • Matsumura, K. 2001. No ability to produce tetrodotoxin in bacteria. Appl. Environ. Microbiol. 67:2393–2394.

    Article  CAS  PubMed  Google Scholar 

  • McMichael, D. F. 1964. Identity of venomous octopus responsible for a fatal bite at Darwin, Northern Territory. J. Malacol. Soc. Aust. 1:23–24.

    Google Scholar 

  • Mosher, H. S. 1986. The chemistry of tetrodotoxin. Ann. NY Acad. Sci. 479:32–43.

    Article  CAS  PubMed  Google Scholar 

  • Mosher, H. S., Fuhrman, F. A., Buchwald, H. D., and Fischer, H. G. 1964. Tarichatoxin -tetrodotoxin: A potent neurotoxin. Science 144:1100–1110.

    Article  CAS  PubMed  Google Scholar 

  • Ohyabu, N., Nishikawa, T., and Isobe, M. 2003. First asymmetric total synthesis of tetrodotoxin. J. Am. Chem. Soc. 125:8798–8805.

    Article  CAS  PubMed  Google Scholar 

  • Orians, G. H., and Janzen, D. H. 1974. Why are embryos so tasty? Am. Nat. 108:581–591.

    Article  Google Scholar 

  • Overath, H., and von Boletzky, S. 1974. Laboratory observations on spawning and embryonic development of a blue-ringed octopus. Mar. Biol. 27:333–337.

    Article  Google Scholar 

  • Pawlik, J. R., Kernan, M. R., Molinski, T. F., Harper, M. K., and Faulkner, D. J. 1988. Defensive chemicals of the Spanisch dancer nudibranch Hexabranchus sanguineus and its egg ribbons: macrolides derived from a sponge diet. J. Exp. Mar. Biol. Ecol. 119:99–109.

    Article  CAS  Google Scholar 

  • Piel, J. 2004. Metabolites from symbiotic bacteria. Nat. Prod. Rep. 21:519–538.

    Article  CAS  PubMed  Google Scholar 

  • Robertson, A., Stirling, D., Robillot, C., Llewellyn, L., Negri, A. 2004. First report of saxiton in octopi. Toxicon 44:765–771.

    Article  CAS  PubMed  Google Scholar 

  • Schroeder, F. C., Gonzalez, A., Eisner, T., and Meinwald, J. 1999. Miriamin, a defensive diterpene from the eggs of a land slug (Arion sp.). Proc. Nat. Acad. Sci. USA 96:13620–13625.

    Article  CAS  PubMed  Google Scholar 

  • Sheumack, D. D., Howden, M. E. H., and Spence, I. 1978. Maculotoxin: a neurotoxin from the glands of the octopus, Hapalochlaena maculosa identified as tetrodotoxin. Science 199:188–189.

    Article  CAS  PubMed  Google Scholar 

  • Sheumack, D. D., Howden, M. E., and Spence, I. 1984. Occurrence of a tetrodotoxin-like compound in the eggs of the venomous blue-ringed octopus (Hapalochlaena maculosa). Toxicon 22:811–812.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu, Y., and Kobayashi, M. 1983. Apparent lack of tetrodotoxin biosynthesis in captured Taricha torosa and Taricha granulosa. Chem. Pharm. Bull. 10:3625–3631.

    Google Scholar 

  • Tarjuelo, I., López-Legentil, S., Codina, M., and Turon, X. 2002. Defence mechanisms of adults and larvae of colonial ascidians: patterns of palatability and toxicity. Mar. Ecol. Prog. Ser. 235:103–115.

    Article  Google Scholar 

  • Toledo, R. C., and Jared, C. 1995. Cutaneous granular glands and amphibian venoms. Comp. Biochem. Physiol. 111A:1–29.

    Article  CAS  Google Scholar 

  • Tranter, D. J., and Augustine, O. 1973. Observations on the life history of the blue-ringed octopus Hapalochlaena maculosa. Mar. Biol. (Berl.) 18:115–128.

    Article  Google Scholar 

  • Tsuda, K., Ikuma, S., Kawamura, M., Tachikawa, R., Sakai, K., Tamura, C., and Amakasu, O. 1964. On the structure of tetrodotoxin and its derivatives. Chem. Pharm. Bull. 12:1357–1374.

    CAS  PubMed  Google Scholar 

  • von Boletzky, S. 1989. Recent studies on spawning, embryonic development, and hatching in the Cephalopoda. Adv. Mar. Biol. 25:85–115.

    Article  Google Scholar 

  • von Boletzky, S. 2003. Biology of early life stages in cephalopod molluscs Adv. Mar. Biol. 44:143–203.

    Article  Google Scholar 

  • Williams, B. L., and Caldwell, R. L. 2009. Intra–organismal distribution of tetrodotoxin in two species of blue–ringed octopuses (Hapalochlaena fasciata and H. lunulata). Toxicon 54:345–353.

    Article  CAS  PubMed  Google Scholar 

  • Williams, B. L., Hanifin, C. T., Brodie, E. D., Jr., and E. D. Brodie, III. 2010. Tetrodotoxin (TTX) affects survival probability of rough skinned newts (Taricha granulosa) faced with TTX-resistant garter snake predators (Thamnophis sirtalis). Chemoecology 20:285–290.

    Article  CAS  Google Scholar 

  • Woodward, R. B., 1964. The structure of tetrodotoxin. Pure. Appl. Chem. 9:49–74.

    Article  CAS  Google Scholar 

  • Yotsu, M., Endo, A., and Yasumoto, T. 1989. An improved tetrodotoxin analyzer. Agric. Biol. Chem. 53:893–895.

    CAS  Google Scholar 

  • Yotsu-Yamashita, M., Mebs, D., and Flachsenberger, W. 2007. Distribution of tetrodotoxin in the body of the blue-ringed octopus (Hapalochlaena maculosa). Toxicon 49:410–412.

    Article  CAS  PubMed  Google Scholar 

  • Zangerl, A. R., and Berenbaum, M. R. 1997. Cost of chemically defending seeds: furanocourmarins and Pastinaca sativa. Am. Nat. 150:491–504.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

David Baxter provided H. fasciata natural history information and assistance collecting in Manly. Collecting permits for H. fasciata were supplied by the New South Wales Fisheries Department, Australia (permit #s P05/0101-1.0 & P05/0101-2.0). Julie Himes provided help with animal care and octopus breeding at the University of California, Berkeley (UCB). Drs. Michael Pfrender, Daryll DeWald, Jon Takemoto, and Paul Wolf at Utah State University (USU) shared equipment and advice. Dr. Daniel Mulcahy at Brigham Young University volunteered for fieldwork and Dr. Christine Huffard at Monterey Bay Research Institute assisted with octopus dissections. We thank Dr. Isao Kubo for discussions on the structure and chemistry of TTX. Stephanie Bush, Joey Pakes, Jean Alupay, and Dr. David Lindberg at UCB, Dr. Christine Huffard at MBARI, and Dr. Christopher Feldman at the University of Nevada, Reno, provided comments on earlier drafts of this manuscript and their aid was appreciated. The Department of Integrative Biology (UCB) and the University of California Museum Of Paleontology funded this project through the Summer Research Grant and Graduate Student Research Grant to BLW. Funding was also provided by NSF grant #DEB-031572 to EDB Jr.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Becky L. Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, B.L., Hanifin, C.T., Brodie, E.D. et al. Ontogeny of Tetrodotoxin Levels in Blue-ringed Octopuses: Maternal Investment and Apparent Independent Production in Offspring of Hapalochlaena lunulata . J Chem Ecol 37, 10–17 (2011). https://doi.org/10.1007/s10886-010-9901-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-010-9901-4

Key Words

Navigation