Skip to main content

Advertisement

Log in

Responses of Bark Beetle-Associated Bacteria to Host Monoterpenes and Their Relationship to Insect Life Histories

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Bark beetles that colonize living conifers and their microbial associates encounter constitutive and induced chemical defenses of their host. Monoterpene hydrocarbons comprise a major component of these allelochemicals, and many are antibiotic to insects, fungi, and bacteria. Some bark beetle species exhaust these defenses by killing their host through mass attacks mediated by aggregation pheromones. Others lack adult aggregation pheromones and do not engage in pheromone-mediated mass attacks, but rather have the ability to complete development within live hosts. In the former species, the larvae develop in tissue largely depleted of host terpenes, whereas in the latter exposure to these compounds persists throughout development. A substantial literature exists on how monoterpenes affect bark beetles and their associated fungi, but little is known of how they affect bacteria, which in turn can influence beetle performance in various manners. We tested several bacteria from two bark beetle species for their ability to grow in the presence of a diversity of host monoterpenes. Bacteria were isolated from the mountain pine beetle, Dendroctonus ponderosae Hopkins, which typically kills trees during colonization, and the red turpentine beetle, Dendroctonus valens LeConte, which often lives in their host without causing mortality. Bacteria from D. ponderosae were gram-positive Actinobacteria and Bacilli; one yeast also was tested. Bacteria from D. valens were Actinobacteria, Bacilli, and γ-Proteobacteria. Bacteria from D. valens were more tolerant of monoterpenes than were those from D. ponderosae. Bacteria from D. ponderosae did not grow in the presence of α-pinene and 3-carene, and grew in, but were inhibited by, β-pinene and β-phellandrene. Limonene and myrcene had little inhibitory effect on bacteria from either beetle species. Tolerance to these antibiotic compounds appears to have resulted from adaptation to living in a terpene-rich environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Adams, A. S., Adams, S. M., Currie, C. R., Gillette, N. E., and Raffa, K. F. 2010. Geographic variation in bacterial communities associated with the red turpentine beetle (Coleoptera: Curculionidae). Environ. Entomol. 39:406–414.

    Article  PubMed  Google Scholar 

  • Adams, A. S., Currie, C. R., Cardoza, Y. J., Klepzig, K. D., and Raffa, K. F. 2009. Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts. Can. J. For. Res. 39:1133–1147.

    Article  CAS  Google Scholar 

  • Adams, A. S., Six, D. L., Adams, S. M., and Holben, W. E. 2008. In vitro interactions between yeasts and bacteria and the fungal symbionts of the mountain pine beetle (Dendroctonus ponderosae). Microb. Ecol. 56:460–466.

    Article  PubMed  Google Scholar 

  • Aukema, B. H., Carroll, A. L., Zhu, J., Raffa, K .F., Sickley, T. A., and Taylor, S. W. 2006. Landscape level analysis of mountain pine beetle in British Columbia, Canada: spatiotemporal developments and spatial synchrony within the present outbreak. Ecography 29:427–441.

    Article  Google Scholar 

  • Aukema, B. H., Zhu, J., Møller, J., Rasmussen, J. G., and Raffa, K. F. 2010. Predisposition to bark beetle attack by root herbivores and associated pathogens: roles in forest decline, gap formation, and persistence of endemic bark beetle populations. For. Ecol. Manag. 259:374–382.

    Article  Google Scholar 

  • Bentz, B. J., Logan, J., Macmahon, J., Allen, C. D., Ayres, M., Berg, E., Carroll, A., Hansen, M., Hicke, J., Joyce, L., Macfarlane, W., Munson, S., Negrón, J., Paine, T., Powell, J., Raffa, K., Régnière, J., Reid, M., Romme, B., Seybold, S. J., Six, D., Tomback, D., Vandygriff, J., Veblen, T., White, M., Witcosky, J., and Wood, D. 2009. Bark Beetle Outbreaks in Western North America: Causes and Consequences. University of Utah Press, Chicago, IL.

    Google Scholar 

  • Bentz, B. J., Régnière, J., Fettig, C. J., Hansen, E. M., Hayes, J. L., Hicke, J. A., Kelsey, R. G., Negrón, J. F., and Seybold, S. J. 2010. Climate change and bark beetles of the western United States and Canada: direct and indirect effects. BioScience 60:602–613

    Article  Google Scholar 

  • Berryman, A. A. 1986. Forest Insects: Principles and Practice of Population Management. Plenum Press, New York.

    Google Scholar 

  • Boone, C. K., Aukema, B. H., Bohlmann, J., Carroll, A. L., and Raffa, K. F. 2011. Efficacy of tree defense physiology varies with bark beetle population density: a basis for positive feedback in eruptive species. Can. J. For. Res. 41:1174–1188.

    Article  Google Scholar 

  • Boone, C. K., Six, D. L., and Raffa, K. F. 2008a. The enemy of my enemy is still my enemy: competitors add to predator load of a tree-killing bark beetle. Agric. For. Entomol. 10:411–421.

    Article  Google Scholar 

  • Boone, C. K., Six, D. L., Zheng, Y., and Raffa, K. F. 2008b. Exploitation of microbial symbionts of bark beetles by parasitoids and dipteran predators. Environ. Entomol. 37:150–161.

    Article  PubMed  Google Scholar 

  • Borden, J. H., Pureswaran, D. S., and Lafontaine, J. P. 2008. Synergistic blends of monoterpenes for aggregation pheromones of the mountain pine beetle (Coleoptera: Curculionidae). J. Econ. Entomol. 101:1266–1275.

    Article  PubMed  CAS  Google Scholar 

  • Brand, J. M., Schultz, J., Barras, S. J., Edson, L. F., Payne, T. L., and Hedden, R. L. 1977. Bark beetle pheromones: enhancement of Dendroctonus frontalis (Coleoptera: Scolytidae) aggregation pheromone by yeast metabolites in laboratory assays. J. Chem. Ecol. 3:657–666.

    Article  CAS  Google Scholar 

  • Brignolas, F., Lacroix, B., Lieutier, F., Sauvard, D., Drouet, A., Claudot, A. C., Yart, A., Berryman, A. A., and Christiansen, E. 1995. Induced responses in phenolic metabolism in two Norway spruce clones after wounding and inoculations with Ophiostoma polonicum, a bark beetle-associated fungus. Plant Physiol. 109:821–827.

    PubMed  CAS  Google Scholar 

  • Cardoza, Y. J., Klepzig, K. D., and Raffa, K. F. 2006. Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi. Ecol. Entomol. 31:636–645.

    Article  Google Scholar 

  • Cardoza, Y. J., Vasanthakumar, A., Suazo, A., and Raffa, K. F. 2009. Survey and phylogenetic analysis of culturable microbes in the oral secretions of three bark beetle species. Entomol. Exp. Appl. 131:138–147.

    Article  Google Scholar 

  • Carroll, A., Taylor, S. W., Régnière, J., and Safranyik, L. 2003. Effects of climate change on range expansion by the mountain pine beetle in British Columbia, pp. 223–232, in T. L. Shore, J. E. Brooks, and J. E. Stone (eds.). Mountain Pine Beetle Symposium: Challenges and Solutions, Nat. Res. Ca., Can. For. Serv., Victoria, Report No. BC-X-399.

  • Chang, H. C. and Oriel, P. 1994. Bioproduction of perillyl alcohol and related monoterpenes by isolates of Bacillus stearothermophilus. J. Food Sci. 59:660–662.

    Article  CAS  Google Scholar 

  • Coulson, R. N. and Witter, J. A. 1984. Forest Entomology: Ecology and Management. Wiley & Sons, New York.

    Google Scholar 

  • Critchfield, W. B. 1985. The late Quaternary history of lodgepole and jack pines. Can. J. For. Res. 15:749–772.

    Article  Google Scholar 

  • Cullingham, C. I., Cooke, J. E. K., Dand, S., Davis, C. S., Cooke, B. J., and Coltman, D. W. 2011. Mountain pine beetle host-range expansion threatens the boreal forest. Mol. Ecol. 20:2157–2171.

    Article  PubMed  Google Scholar 

  • Davis, T. S., Hofstetter, R. W., Foster, J. T., Foote, N. E., and Keim, P. 2011. Interactions between the yeast Ogataea pini and filamentous fungi associated with the western pine beetle. Microb. Ecol. 61:626–634.

    Article  PubMed  Google Scholar 

  • Delalibera, I. JR., Vasanthakumar, A., Burwitz, B. J., Schloss, P. D., Klepzig, K. D., Handelsman, J., and Raffa, K. F. 2007. Composition of the bacterial community in the gut of the pine engraver, Ips pini (Say) (Coleoptera) colonizing red pine. Symbiosis 43:93–104.

    Google Scholar 

  • Diguistini, S., Want, Y., Liao, N. Y., Taylor, G., Tanguay, P., Feau, N., Henrissat, B., Chan, S. K., Hesse-Orce, U., Massoumi Alamouti, S., Tsui, C. K. M., Docking, R. T., Levasseur, A., Haridas, S., Robertson, G., Birol, I., Holt, R. A., Marra, M. A., Hamelin, R. C., Hirst, M., Jones, S. J. M., Bohlmann, J., and Breuil, C. 2011. Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen. Proc. Natl. Acad. Sci. U.S.A. 108:2504–2509.

    Article  PubMed  CAS  Google Scholar 

  • Erbilgin, N., Mori, S. R., Sun, J. H., Stein, J. D., Owen, D. R., Merrill, L. D., Campos Bolaños, R., Raffa, K. F., Méndez Montiel, R., Wood, D. L. and Gillette, N. E. 2007. Response to host volatiles by native and introduced populations of Dendroctonus valens (Coleoptera: Curculionidae, Scolytinae) in North America and China. J. Chem. Ecol. 33:131–146.

    Article  PubMed  CAS  Google Scholar 

  • Furniss, M. M. and Schenk, J. A. 1969. Sustained natural infestation by the mountain pine beetle in seven new Pinus and Picea hosts. J. Econ. Entomol. 62:518–519.

    Google Scholar 

  • Furniss, R. L. and Carolin, V. M. 1977. Western Forest Insects. USDA For. Serv. Misc. Publ. No. 1339. Washington, D.C. 654 pp.

  • Geib, S. M., Filley, T. R., Hatcher, P. G., Hoover, K., Carlson, J. E., Del Mar Jimenez-Gasco, M., Nakagawa-Izumi, A., Sleighter, R. L., and Tien, M. 2008. Lignin degradation in wood-feeding insects. Proc. Nat. Acad. Sci. U.S.A. 105:12932–12937.

    Article  CAS  Google Scholar 

  • Hobson, K. R., Wood, D. L., Cool, L. G., White, P. R., Ohtsuka, T., Kubo, I., and Zavarin, E. 1993. Chiral specificity in response by the bark beetle Dendroctonus valens to host kairomones. J. Chem. Ecol. 19:1837–1846.

    Article  CAS  Google Scholar 

  • Hofstetter, R. W., Mahfouz, J. B., Klepzig, K. D., and Ayres, M. P. 2005. Effects of tree phytochemistry on the interactions among endophloedic fungi associated with the southern pine beetle. J. Chem. Ecol. 31:539–560.

    Article  PubMed  CAS  Google Scholar 

  • Holben, W. E., Williams, P., Saarinen, M., Särkilahti, L. K., and Apajalahti, J. H. A. 2002. Phylogenetic analysis of intestinal microflora indicates a novel mycoplasma phylotype in farmed and wild salmon. Microb. Ecol. 44:175–185.

    Article  PubMed  CAS  Google Scholar 

  • Hopkins, A. D. 1909. Contributions toward a monograph of the scolytid beetles. I. The genus Dendroctonus. USDA Bur. Entomol. Technol. Ser. 17, Part I.

  • Huber, D. P. W., Aukema, B. H., Hodgkinson, R. S., and Lindgren, B. S. 2009. Successful reproduction and brood production in live, standing interior hybrid spruce, Picea engelmannii x glauca, by mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae). Agric. For. Entomol. 11:83–89.

    Article  Google Scholar 

  • Hulcr, J., Adams, A. S., Raffa, K., Hofstetter, R. W., Klepzig, K. D., and Currie, C. R. 2011. Presence and diversity of Streptomyces in Dendroctonus and sympatric bark beetle galleries across North America. Microb. Ecol. 61:759–768.

    Article  PubMed  Google Scholar 

  • Jiménez, J. I., Nogales, J., García, J. L., and Díaz, E. 2010. A genomic view of the catabolism of aromatic compounds in Pseudomonas, pp. 1297–1325, in K. N. Timmis (ed.). Handbook of Hydrocarbon and Lipid Microbiology. Springer-Verlag, Heidelberg, Germany.

    Chapter  Google Scholar 

  • Keeling, C. I. and Bohlmann, J. 2006. Diterpene resin acids in conifers. Phytochemistry 67:2415–2423.

    Article  PubMed  CAS  Google Scholar 

  • Kelley, S. T. and Farrell, B. D. 1998. Is specialization a dead end? The phylogeny of host use in Dendroctonus bark beetles (Scolytidae). Evolution 52:1731–1743.

    Article  CAS  Google Scholar 

  • Klepzig, K. D., Raffa, K. F., and Smalley, E. B. 1991. Association of an insect-fungal complex with red pine decline in Wisconsin. For. Sci. 37:1119–1139.

    Google Scholar 

  • Klepzig, K. D., Smalley, E. B., and Raffa, K.F. 1996. Combined chemical defenses against an insect-fungal complex. J. Chem. Ecol. 22:1367–1388.

    Article  Google Scholar 

  • Leufvén, A., Bergström, G., and Falsen, E. 1988. Oxygenated monoterpenes produced by yeasts, isolated from Ips typographus (Coleoptera, Scolytidae) and grown in phloem medium. J. Chem. Ecol. 14:353–362.

    Article  Google Scholar 

  • Lewinsohn, E., Gijzen, M., Savage, T. J., and Croteau, R. 1991. Defense mechanisms of conifers. Plant Physiol. 96:38–43.

    CAS  Google Scholar 

  • Logan, J. A., Régnière, J., and Powell, J. A. 2003. Assessing the impacts of global warming on forest pest dynamics. Front. Ecol. Environ. 1:130–137.

    Article  Google Scholar 

  • Logan, J. A., Macfarlane, W. W., and Willcox, L. 2010. Whitebark pine vulnerability to climate change induced mountain pine beetle disturbance in the Greater Yellowstone Ecosystem. Ecol. Appl. 20:895–902.

    Article  PubMed  Google Scholar 

  • Lu, M., Wingfield, M. J., Gillette, N. E., Mori, S. R., and Sun, J. -H. 2010. Complex interactions among host pines and fungi vectored by an invasive bark beetle. New Phytol. 187:859–866.

    Article  PubMed  Google Scholar 

  • Middelbeek, E. J., Jenkins, R. O., and Drijver-De Hass, S. J. 1992. Growth in batch culture, pp. 79–106, in T. G. Cartledge (ed.). In vitro Cultivation of Micro-organisms. Butterworth-Heinemann Ltd., Oxford, U.K.

    Google Scholar 

  • Miller, D. R. and Lindgren, B. S. 2000. Comparison of α-pinene and myrcene on attraction of mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae) to pheromones in stands of western white pine. J. Entomol. Soc. Brit. Col. 97:41–46.

    Google Scholar 

  • Morales-Jiménez, J., Zúñiga, G., Villa-Tanaca, L., and Hernández-Rodríguez, C. 2009. Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae). Microb. Ecol. 58:897–891.

    Article  Google Scholar 

  • Nealis, V. and Peter, B. 2008. Risk assessment of the threat of mountain pine beetle to Canada’s boreal and eastern pine forests. Natural Resources Canada, Canadian Forest Service, Information Report BC-X-417, 31 pp.

  • Ott, D. S. 2009. Genetic variation of lodgepole pine Pinus contorta chemical and physical defenses that affect mountain pine beetle Dendroctonus ponderosae attack and tree mortality. Thesis, M.S., Univ. Northern British Columbia, Prince George, B.C., Canada.

  • Owen, D. R., Smith, S. L., and Seybold, S. J. 2010. The red turpentine beetle. USDA Forest Service, Forest Insect & Disease Leaflet No. 58, June 2010, 9 pp.

  • Paine, T. D. and Hanlon, C. C. 1994. Influence of oleoresin constituents from Pinus ponderosa and Pinus jeffreyi on growth of mycangial fungi from Dendroctonus ponderosae and Dendroctonus jeffreyi. J. Chem. Ecol. 20:2551–2563.

    Article  CAS  Google Scholar 

  • Paine, T. D., Raffa, K. F., and Harrington, T. C. 1997. Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu. Rev. Entomol. 42:179–206.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, T. W., Nation, J. L., Wilkinson, R. C., Foltz, J. L., Pierce, H. D., and Oehlschlager, A. C. 1990. Response specificity of Dendroctonus terebrans (Coleoptera: Scolytidae) to enantiomers of its sex pheromones. Annu. Entomol. Soc. Am. 83:251–257.

    CAS  Google Scholar 

  • Pureswaran, D. S., Gries, R., and Borden, J. H. 2004. Quantitative variation in monoterpenes in four species of conifers. Biochem. System. Ecol. 32:1109–1136.

    Article  CAS  Google Scholar 

  • Raffa, K. F. and Berryman, A. A. 1982a. Physiological differences between lodgepole pines resistant and susceptible to the mountain pine beetle and associated microorganisms. Environ. Entomol. 11:486–492.

    CAS  Google Scholar 

  • Raffa, K. F. and Berryman, A. A. 1982b. Accumulation of monoterpenes and associated volatiles following fungal inoculation of grand fir with a fungus transmitted by the fir engraver, Scolytus ventralis (Coleoptera: Scolytidae). Can. Entomol. l14:797–810.

  • Raffa, K. F. and Berryman, A. A. 1983. Physiological aspects of lodgepole pine wound responses to a fungal symbiont of the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae). Can. Entomol. 115:723–734.

    Article  Google Scholar 

  • Raffa, K. F., Berryman, A. A., Simasko, J., Teal, W., and Wong, B. L. 1985. Effects of grand fir monoterpenes on the fir engraver, Scolytus ventralis (Coleoptera: Scolytidae), and its symbiotic fungus. Environ. Entomol. 14:552–556.

    CAS  Google Scholar 

  • Raffa, K. F., Phillips, T. W., and Salom, S. M. 1993. Strategies and mechanisms of host colonization by bark beetles, pp. 103–128, in T. O. Schowalter and G. Filip (eds.). Beetle-pathogen Interactions in Conifer Forests. Academic Press Ltd., London, UK.

    Google Scholar 

  • Raffa, K. F. and Smalley, E. B. 1995. Interaction of pre-attack and induced monoterpene concentrations in host conifer defense against bark beetle-fungal complexes. Oecologia 102:285–295.

    Article  Google Scholar 

  • Randall, C. B. 2006. Red Turpentine Beetle: Ecology and Management. Forest Health Protection and State Forestry Organizations. 7 pp.

  • Rasmussen, L. A. 1974. Flight and attack behavior of mountain pine beetles in lodgepole pine of northern Utah and southern Idaho. USDA For. Serv., Intermountain Forest and Range Exp. St., Ogden, UT, Research Note INT-180. 7 pp.

  • Reddemann, J. and Reinhard, S. 1996. The importance of monoterpenes in the aggregation of the spruce bark beetle (Coleoptera: Scolytidae: Ipini). Entomol. Gen. 21:69–80.

    Google Scholar 

  • Robert, J. A., Madilao, L. L., White, R., Yanchuk, A., King, J., and Bohlmann, J. 2010. Terpenoid metabolite profiling in Sitka spruce identifies association of dehydroabietic acid, (+)-3-carene, and terpinolene with resistance against white pine weevil. Botany 88:810–820.

    Article  CAS  Google Scholar 

  • Safranyik, L., Carroll, A. L., Riel, W. G., Shore, T. L., Peter, B., Nealis, V. G., and Taylor, S. W. 2010. Potential for range expansion of mountain pine beetle into the boreal forest of North America. Can. Entomol. 142:415–442.

    Article  Google Scholar 

  • Savithiry, N., Gage, D., Fu, W., and Oriel, P. 1998. Degradation of pinene by Bacillus pallidus BR425. Biodegr. 9:337–341.

    Article  CAS  Google Scholar 

  • Schmid, J. M. and Mata, S. A. 1991. Red turpentine beetles in partially cut stands of ponderosa pine. USDA Forest Service Rocky Mountain Research Station, Research Note RM-505, Fort Collins, CO, 3 pp.

  • Scott, J. J., Oh, D. -C., Yuceer, M. C., Klepzig, K. D., Clardy, J., and Currie, C. R. 2008. Bacterial protection of beetle-fungus mutualism. Science 322:63.

    Article  PubMed  CAS  Google Scholar 

  • Seybold, S. J., Bohlmann, J., and Raffa, K. F. 2000. Biosynthesis of coniferophagous bark beetle pheromones and conifer isoprenoids: Evolutionary perspective and synthesis. Can. Entomol. 132:697–753.

    Article  Google Scholar 

  • Seybold, S. J., Huber, D. P. W., Lee, J. C., Graves, A. D., and Bohlmann, J. 2006. Pine monoterpenes and pine bark beetles: A marriage of convenience for defense and chemical communication. Phytochem. Rev. 5:143–178.

    Article  CAS  Google Scholar 

  • Shifrine, M. and Phaff, H. J. 1956. The association of yeasts with certain bark beetles. Mycologia 48:41–55.

    Article  Google Scholar 

  • Skrodenyte-Arbaciauskiene, V., Buda, V., Radziute, S., and Stunzenas, V. 2006. Myrcene-resistant bacteria isolated from the gut of phytophagous insect Ips typographus. Ekologija 4:1–6.

    Google Scholar 

  • Smith, R. H. 1961. Red turpentine beetle. USDA For. Serv., Forest Pest Leaflet 55. 8 pp.

  • Smith, R. H. 1963. Toxicity of pine resin vapors to three species of Dendroctonus bark beetles. J. Econ. Entomol. 56:827–831.

    CAS  Google Scholar 

  • Smith, R. H. 2000. Xylem monoterpenes of pines: distribution, variation, genetics, function. USDA For. Serv., Gen. Tech. Rep. PSW-GTR-177.

  • Sturgeon, K. B. 1979. Monoterpene variation in ponderosa pine xylem resin related to western pine beetle predation. Evolution 33:803–814.

    Article  CAS  Google Scholar 

  • Sun, J., Miao, Z., Zhang, Z., Zhang, Z., and Gillette, N. E. 2004. Red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Scolytidae), response to host semiochemicals in China. Environ. Entomol. 33:206–212.

    Article  CAS  Google Scholar 

  • Wallin, K. F. and Raffa, K. F. 1999. Altered constitutive and inducible phloem monoterpenes following natural defoliation of jack pine: implications to host mediated interguild interactions and plant defense theories. J. Chem. Ecol. 25:861–880.

    Article  CAS  Google Scholar 

  • Wallin, K. F. and Raffa, K. F. 2000. Influences of host chemicals and internal physiology on the multiple steps of postlanding host acceptance behavior of Ips pini (Coleoptera: Scolytidae). Environ. Entomol. 29:442–453.

    Article  CAS  Google Scholar 

  • Warnecke, F., Luginbuhl, P., Ivanova, N., Ghassemian, M., Richardson, T., Stege, J., Cayouette, M., Mchardy, A., Djordjevic, G., Aboushadi, N., et al. 2007. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565.

    Article  PubMed  CAS  Google Scholar 

  • Whitney, H. S. 1982. Relationships between bark beetles and symbiotic organisms, pp. 183–211, in J. B. Mitton and K. B. Sturgeon (eds.). Bark Beetles in North American Conifers. University of Texas Press, Austin, TX.

    Google Scholar 

  • Wood, S. L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Nat. Mem. 6. Brigham Young University, Provo, UT.

  • Wright, S. J., Caunt, P., Carter, D., and Baker, P. B. 1986. Microbial oxidation of alpha-pinene by Serratia marcescens. Appl. Microbiol. Biotech. 23:224–227.

    Article  CAS  Google Scholar 

  • Yan, Z., Sun, J., Owen, D., and Zhang, Z. 2005. The red turpentine beetle, Dendroctonus valens LeConte (Scolytidae): an exotic invasive pest of pine in China. Biodivers. Conserv. 14:1735–1760.

    Article  Google Scholar 

  • Zavarin, E., Critchfield, W. B., and Snajberk, K. 1969. Turpentine composition of Pinus contorta x Pinus banksiana hybrids and hybrid derivatives. Can. J. Bot. 47:1443–1453.

    Article  CAS  Google Scholar 

  • Zilber-Rosenberg, I. and Rosenberg, E. 2008. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol. Rev. 32:723–735.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank N. Erbilgin (University of Alberta, Edmonton, AB) and K. Bleiker (Canadian Forest Service, Victoria, BC, Canada) for assistance in collecting mountain pine beetles. C. Currie (University of Wisconsin, Madison, WI, USA) for use of the microplate reader and S. Adams (University of Wisconsin, Madison, WI, USA) for sequencing. This research was supported by funding from the USDA National Research Initiative (2003-3502-13528) and the Natural Sciences and Engineering Research Council of Canada, Genome Canada and Genome British Columbia. Helpful critiques by three anonymous reviewers improved the quality of our paper and are much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth F. Raffa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, A.S., Boone, C.K., Bohlmann, J. et al. Responses of Bark Beetle-Associated Bacteria to Host Monoterpenes and Their Relationship to Insect Life Histories. J Chem Ecol 37, 808–817 (2011). https://doi.org/10.1007/s10886-011-9992-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-011-9992-6

Key Words

Navigation