Skip to main content
Log in

Microbial Brokers of Insect-Plant Interactions Revisited

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Recent advances in sequencing methods have transformed the field of microbial ecology, making it possible to determine the composition and functional capabilities of uncultured microorganisms. These technologies have been instrumental in the recognition that resident microorganisms can have profound effects on the phenotype and fitness of their animal hosts by modulating the animal signaling networks that regulate growth, development, behavior, etc. Against this backdrop, this review assesses the impact of microorganisms on insect-plant interactions, in the context of the hypothesis that microorganisms are biochemical brokers of plant utilization by insects. There is now overwhelming evidence for a microbial role in insect utilization of certain plant diets with an extremely low or unbalanced nutrient content. Specifically, microorganisms enable insect utilization of plant sap by synthesizing essential amino acids. They also can broker insect utilization of plant products of extremely high lignocellulose content, by enzymatic breakdown of complex plant polysaccharides, nitrogen fixation, and sterol synthesis. However, the experimental evidence for microbial-mediated detoxification of plant allelochemicals is limited. The significance of microorganisms as brokers of plant utilization by insects is predicted to vary, possibly widely, as a result of potentially complex interactions between the composition of the microbiota and the diet and insect developmental age or genotype. For every insect species feeding on plant material, the role of resident microbiota as biochemical brokers of plant utilization is a testable hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abo-Khatwa N (1978) Cellulase of fungus-growing termites: a new hypothesis of its origin. Experientia 34:559–560

    Article  CAS  Google Scholar 

  • Adams AS, Aylward FO, Adams SM, Erbilgin N, Aukema BH, Currie CR, Suen G, Raffa KF (2013) Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Appl Environ Microbiol. [Epub ahead of print]

  • Aharon Y, Pasternak Z, Ben Yosef M, Behar A, Lauzon C, Yuval B, Jurkevitch E (2013) Phylogenetic, metabolic, and taxonomic diversities shape mediterranean fruit fly microbiotas during ontogeny. Appl Environ Microbiol 79:303–313

    Article  PubMed  CAS  Google Scholar 

  • Akman Gunduz E, Douglas AE (2009) Symbiotic bacteria enable insect to use a nutritionally inadequate diet. Proc Roy Soc Lond B 276:987–991

    Article  CAS  Google Scholar 

  • Ali JG, Alborn HT, Stelinski LL (2011) Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes. J Ecol 99:26–35

    Article  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Revs 59:143–169

    CAS  Google Scholar 

  • Asano Y, Hiramoto T, Nishino R, aiba Y, Kimura T, Yoshihara K, Koga Y, Sudo N (2012) Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Amer J Physiol Gastrointest Liver Physiol 303:G1288–G1295

    Article  CAS  Google Scholar 

  • Bansal R, Hulbert S, Schemerhorn B, Reese JC, Whitworth RJ, Stuart JJ, Chen MS (2011) Hessian fly-associated bacteria: transmission, essentiality, and composition. PLoS One 6:e23170

    Article  PubMed  CAS  Google Scholar 

  • Behar A, Yuval B, Jurkevitch E (2005) Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata. Mol Ecol 14:2637–2643

    Article  PubMed  CAS  Google Scholar 

  • Behmer ST, Nes WD (2003) Insect sterol nutrition and physiology: a global overview. Adv Insect Physiol 31:1–72

    Article  CAS  Google Scholar 

  • Behmer ST, Grebenok RJ, Douglas AE (2011) Plant sterols and host plant suitability for a phloem-feeding insect. Funct Ecol 25:484–491

    Article  Google Scholar 

  • Berenbaum M (1980) Adaptive significance of midgut pH in larval Lepidoptera. Amer Nat 115:138–146

    Article  Google Scholar 

  • Brodbeck BV, Mizell RF, Andersen PC (1993) Physiological and behavioural adaptations of three species of leafhoppers in response to the dilute nutrient content of xylem sap. J Insect Physiol 39:73–81

    Article  CAS  Google Scholar 

  • Buchner P (1965) Endosymbioses of animals with plant microorganisms. John Wiley & Sons, Chichester

    Google Scholar 

  • Bugg TD, Ahmad M, Hardiman EM, Singh R (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22:394–400

    Article  PubMed  CAS  Google Scholar 

  • Calderon-Cortes N, Quesada M, Watanabe H, Cano-Camacho H, Oyama K (2012) Endogenous plant cell wall digestion: a key mechanism in insect evolution. Annu Revs Ecol Evol Syst 43:45–71

    Article  Google Scholar 

  • Carini P, Steindler L, Beszteri S, Giovannoni SJ (2013) Nutrient requirements for growth of the extreme oligotroph ‘Candidatus Pelagibacter ubique’ HTCC1062 on a defined medium. ISME J 7:592–602

    Article  PubMed  CAS  Google Scholar 

  • Cazemir AE, Op Den Camp HJM, Hackstein JHP, Vogels GD (1997) Fibre digestion in arthropods. Comp Biochem Physiol A Physiol 118:101–109

    Article  Google Scholar 

  • Chaston JM, Douglas AE (2012) Making the most of “omics” for symbiosis research. Biol Bull 223:21–29

    PubMed  CAS  Google Scholar 

  • Christensen H, Fogel ML (2011) Feeding ecology and evidence for amino acid synthesis in the periodical cicada (Magicicada). J Insect Physiol 57:211–219

    Article  PubMed  CAS  Google Scholar 

  • De Fine Licht HH, Schiott M, Rogowska-Wrzesinska A, Nygaard S, Roepstorff P, Boomsma JJ (2013) Laccase detoxification mediates the nutritional alliance between leaf-cutting ants and fungus-garden symbionts. Proc Natl Acad Sci USA 110:583–587

    Article  PubMed  Google Scholar 

  • Despres L, David JP, Gallet C (2007) The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol Evol 22:298–307

    Article  PubMed  Google Scholar 

  • Dong S, Pang K, Bai X, Yu X, Hao P (2011) Identification of two species of yeast-like symbiotes in the brown planthopper, Nilaparvata lugens. Curr Microbiol 62:1133–1138

    Article  PubMed  CAS  Google Scholar 

  • Douglas AE (1989) Mycetocyte symbiosis in insects. Biol Rev Camb Philos Soc 64:409–434

    Article  PubMed  CAS  Google Scholar 

  • Douglas AE (1992) In: Menken SBJ, Visser JH, Harrewijn P (eds) Microbial brokers of insect-plant interactions. Proceedings of the 8th international insect-plant interactions. Kluwer Academic Publishers, Dordrecht, pp 329–336

    Google Scholar 

  • Douglas AE (2003) The nutritional physiology of aphids. Adv Insect Physiol 31:73–140

    Article  CAS  Google Scholar 

  • Douglas AE (2009) The microbial dimension in insect nutritional ecology. Funct Ecol 23:38–47

    Article  Google Scholar 

  • Douglas AE, Minto LB, Wilkinson TL (2001) Quantifying nutrient production by the microbial symbionts in an aphid. J Exp Biol 204:349–358

    PubMed  CAS  Google Scholar 

  • Febvay G, Rahbe Y, Rynkiewicz M, Guillaud J, Bonnot G (1999) Fate of dietary sucrose and neosynthesis of amino acids in the pea aphid, Acyrthosiphon pisum, reared on different diets. J Exp Biol 202:2639–2652

    PubMed  CAS  Google Scholar 

  • Gilbert HJ (2010) The biochemistry and structural biology of plant cell wall deconstruction. Plant Physiol 153:444–455

    Article  PubMed  CAS  Google Scholar 

  • Goodman AL, Kallstrom G, Faith JJ, Reyes A, Moore A, Dantas G, Gordon JI (2011) Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc Natl Acad Sci USA 108:6252–6257

    Article  PubMed  CAS  Google Scholar 

  • Hatcher PE (1995) Three-way interactions between plant pathogenic fungi, herbivorous insects and their host plants. Biol Rev Camb Philos Soc 70:639–694

    Article  Google Scholar 

  • Herrera CM, Pellmyr O (2002) Plant-animal interactions. Blackwell Publishing, Oxford, UK, p 313

  • Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T et al (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331:463–467

    Article  PubMed  CAS  Google Scholar 

  • Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214

    Article  Google Scholar 

  • Ingwell LL, Eigenbrode SD, Bosque-Perez NA (2012) Plant viruses alter insect behavior to enhance their spread. Sci Rep 2:578

    Article  PubMed  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Koch A (1960) Intracellular symbiosis in insects. Annu Rev Microbiol 14:121–140

    Article  PubMed  CAS  Google Scholar 

  • Lasken RS (2013) Single-cell sequencing in its prime. Nat Biotechnol 31:211–212

    Article  PubMed  CAS  Google Scholar 

  • Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Prome JC, Denarie J (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344:781–784

    Article  PubMed  CAS  Google Scholar 

  • Loman NJ, Constantinidou C, Chan JZ, Halachev M, Sergeant M, Penn CW, Robinson ER, Pallen MJ (2012) High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nature Rev Microbiol 10:599–606

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  PubMed  CAS  Google Scholar 

  • Lukjancenko O, Wassenaar TD, Ussery DW (2010) Comparison of 61 sequenced Escherichia coli genomes. Microb Ecol 60:708–720

    Article  PubMed  CAS  Google Scholar 

  • Macdonald SJ, Lin GG, Russell CW, Thomas GH, Douglas AE (2012) The central role of the host cell in symbiotic nitrogen metabolism. Proc Roy Soc Lond B 279:2965–2973

    Article  CAS  Google Scholar 

  • Mandel MJ, Wollenberg MS, Stabb EV, Visick KL, Ruby EG (2009) A single regulatory gene is sufficient to alter bacterial host range. Nature 458:215–218

    Article  PubMed  CAS  Google Scholar 

  • Martin MM, Martin JS (1978) Cellulose digestion in midgut of fungus-growing termite Macrotermes natalensis: role of acquired enzymes. Science 199:1453–1455

    Article  PubMed  CAS  Google Scholar 

  • McCutcheon JP, Moran NA (2007) Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci USA 104:19392–19397

    Article  PubMed  CAS  Google Scholar 

  • McCutcheon JP, Moran NA (2010) Functional convergence in reduced genomes of bacterial symbionts spanning 200 My of evolution. Genome Biol Evol 2:708–718

    PubMed  Google Scholar 

  • McCutcheon JP, Moran NA (2012) Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10:13–26

    CAS  Google Scholar 

  • Mccutcheon JP, Mcdonald BR, Moran NA (2009a) Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc Natl Acad Sci U S A 106:15394–15399

    Article  CAS  Google Scholar 

  • McCutcheon JP, McDonald BR, Moran NA (2009b) Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. PLoS Genet 5:e1000565

    Article  PubMed  Google Scholar 

  • Mcfall-Ngai M, Hadfield MG, Bosch TC, Carey HV, Domazet-Loso T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF et al (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA 110:3229–3236

    Article  PubMed  CAS  Google Scholar 

  • Moran NA (2007) Symbiosis as an adaptive process and source of phenotypic complexity. Proc Natl Acad Sci USA 104:8627–8633

    Article  PubMed  CAS  Google Scholar 

  • Musat N, Foster R, Vagner T, Adam B, Kuypers MM (2012) Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev 36:486–511

    Article  PubMed  CAS  Google Scholar 

  • Nakabachi A, Ishikawa H (1999) Provision of riboflavin to the host aphid, Acyrthosiphon pisum, by endosymbiotic bacteria, Buchnera. J Insect Physiol 45:1–6

    Article  PubMed  CAS  Google Scholar 

  • Nikoh N, Hosokawa T, Oshima K, Hattori M, Fukatsu T (2011) Reductive evolution of bacterial genome in insect gut environment. Genome Biol Evol 3:702–714

    Article  PubMed  CAS  Google Scholar 

  • Noda H, Koizumi Y (2003) Sterol biosynthesis by symbiotes: cytochrome P450 sterol C-22 desaturase genes from yeastlike symbiotes of rice planthoppers and anobiid beetles. Insect Biochem Mol Biol 33:649–658

    Article  PubMed  CAS  Google Scholar 

  • Norris DM, Baker JM, Chu HM (1969) Symbiotic interrelationships between microbes and ambrosia beetles. III. Ergosterol as the source of sterol to the insect. Ann Entomol Soc Am 62:413–414

    CAS  Google Scholar 

  • Ohkuma M, Noda S, Kudo T (1999) Phylogenetic diversity of nitrogen fixation genes in the symbiotic microbial community in the gut of diverse termites. Appl Environ Microbiol 65:4926–4934

    PubMed  CAS  Google Scholar 

  • Oppert C, Klingeman WE, Willis JD, Oppert B, Jurat-Fuentes JL (2010) Prospecting for cellulolytic activity in insect digestive fluids. Comp Biochem Physiol B Biochem Mol Biol 155:145–154

    Article  PubMed  Google Scholar 

  • Palin R, Geitmann A (2012) The role of pectin in plant morphogenesis. Biosystems 109:397–402

    Article  PubMed  CAS  Google Scholar 

  • Pamp SJ, Harrington ED, Quake SR, Relman DA, Blainey PC (2012) Single-cell sequencing provides clues about the host interactions of segmented filamentous bacteria (SFB). Genome Res 22:1107–1119

    Article  PubMed  CAS  Google Scholar 

  • Pant NC, Fraenkel G (1954) Studies of the symbiotic yeasts of the two insect species, Lasioderma serricorne F. and Stegobium paniceum. Biol Bull 107:420–430

    Article  Google Scholar 

  • Pauly M, Keegstra K (2010) Plant cell wall polymers as precursors for biofuels. Curr Op Plant Biol 13:305–312

    Article  CAS  Google Scholar 

  • Pernice M, Meibom A, van den Heuvel A, Kopp C, Domart-Coulon I, Hoegh-Guldberg O, Dove S (2012) A single-cell view of ammonium assimilation in coral-dinoflagellate symbiosis. ISME J 6:1314–1324

    Article  PubMed  CAS  Google Scholar 

  • Pettolino FA, Walsh C, Fincher GB, Bacic A (2012) Determining the polysaccharide composition of plant cell walls. Nature Protoc 7:1590–1607

    Article  CAS  Google Scholar 

  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  PubMed  CAS  Google Scholar 

  • Rasko DA, Rosovitz MJ, Myers GSA, Mogodin EF, Fricke WF, Gajer P, Crabtree J, Sebaihia M, Thomson NR, Chaudhuri R et al (2008) The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bac 190:6881–6893

    Article  CAS  Google Scholar 

  • Renesto P, Crapoulet N, Ogata H, La Scola B, Vestris G, Claverie JM, Raoult D (2003) Genome-based design of a cell-free culture medium for Tropheryma whipplei. Lancet 362:447–449

    Article  PubMed  Google Scholar 

  • Ridley EV, Wong AC, Westmiller S, Douglas AE (2012) Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster. PLoS One 7:e36765

    Article  PubMed  CAS  Google Scholar 

  • Russell JA, Moreau CS, Goldman-Huertas B, Fujiwara M, Lohman DJ, Pierce NE (2009) Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proc Natl Acad Sci USA 106:21236–21241

    Article  PubMed  CAS  Google Scholar 

  • Ryu JH, Kim SH, Lee HY, Bai JY, Nam YD, Bae JW, Lee DG, Shin SC, Ha EM, Lee WJ (2008) Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319:777–782

    Article  PubMed  CAS  Google Scholar 

  • Schoonhoven LM, Van Loon JJA, Dicke M (2005) Insect-plant biology, 2nd edn. Chapman & Hall, London, p 409

  • Shi W, Xie S, Chen X, Sun S, Zhou X, Liu L, Geo P, Kyrpides NC, No E-G, Yuan JS (2013) Comparative genomic analysis of the microbiome of herbivorous insects revealse eco-environmental adaptations: biotechnology applications. PLoS Genet 9:e1003131

    Article  PubMed  CAS  Google Scholar 

  • Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS Nature 407:81–86

    Article  CAS  Google Scholar 

  • Shin SC, Kim S-H, You H, Kim B, Kim AC, Lee K-A, Yoon J-H, Ryu J-H, Lee W-J (2011) Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334:670–674

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Eldin C, Kowalczewska M, Raoult D (2013) Axenic culture of fastidious and intracellular bacteria. Trends Microbiol 21:92–99

    Article  PubMed  CAS  Google Scholar 

  • Slaytor M (1992) Cellulose digestion in termites and cockroaches: what role do symbionts play? Compar Biochem Physiol 103B:775–784

    CAS  Google Scholar 

  • Sloan DB, Moran NA (2012) Endosymbiotic bacteria as a source of carotenoids in whiteflies. Biol Lett 8:986–989

    Article  PubMed  CAS  Google Scholar 

  • Smith K, Mckoy KD, Macpherson AJ (2007) Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Sem Immunol 19:59–69

    Article  CAS  Google Scholar 

  • Southwood TRE (1985) Interactions of plants and animals: pattern and process. Oikos 44:5–11

    Article  Google Scholar 

  • Stecher B, Maier L, Hardt WD (2013) ‘Blooming’ in the gut: how dysbiosis might contribute to pathogen evolution. Nat Rev Microbiol 11:277–284

    Article  PubMed  CAS  Google Scholar 

  • Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F (2011) Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab 14:403–414

    Article  PubMed  CAS  Google Scholar 

  • Stout MJ, Thaler JS, Thomma BP (2006) Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropods. Annu Rev Entomol 51:663–689

    Article  PubMed  CAS  Google Scholar 

  • Tack AJM, Gripenberg S, Roslin T (2012) Cross-kingdom interactions matter: fungal-mediated interactions structure an insect community on oak. Ecol Lett 15:177–185

    Article  PubMed  Google Scholar 

  • Temperton B, Giovannoni SJ (2012) Metagenomics: microbial diversity through a scratched lens. Curr Opin Microbiol 15:605–612

    Article  PubMed  CAS  Google Scholar 

  • Thompson BM, Grebenok RJ, Behmer ST, Gruner DS (2013) Microbial symbionts shape the sterol profile of the xylem-feeding woodwasp, Sirex noctilio. J Chem Ecol 39:129–139

    Article  PubMed  CAS  Google Scholar 

  • Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565

    Article  PubMed  CAS  Google Scholar 

  • Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55:609–632

    Article  PubMed  CAS  Google Scholar 

  • Zaneveld JRR, Parfrey LW, van Treuren W, Lozupone C, Clemente JC, Knights D, Stombaugh J, Kuczynski J, Knight R (2011) Combined phylogenetic and genomic approaches for the high-throughput study of microbial habitat adaptation. Trends Microbiol 19:472–482

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF grant BIO 1241099, AFRI grant NYW-2011-04650 and the Sarkaria Institute for Insect Physiology and Toxicology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela E. Douglas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douglas, A.E. Microbial Brokers of Insect-Plant Interactions Revisited. J Chem Ecol 39, 952–961 (2013). https://doi.org/10.1007/s10886-013-0308-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-013-0308-x

Keywords

Navigation