Skip to main content
Log in

The Scent Chemistry of Heliconius Wing Androconia

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Neotropical Heliconius butterflies are members of various mimicry rings characterized by diverse colour patterns. In the present study we investigated whether a similar diversity is observed in the chemistry of volatile compounds present in male wing androconia. Recent research has shown that these androconia are used during courting of females. Three to five wild-caught male Heliconius individuals of 17 species and subspecies were analyzed by GC/MS. Most of the identified compounds originate from common fatty acids precursors, including aldehydes, alcohols, acetates or esters preferentially with a C18 and C20 chain, together with some alkanes. The compounds occurred in species-specific mixtures or signatures. For example, octadecanal is characteristic for H. melpomene, but variation in composition between the individuals was observed. Cluster analysis of compound occurrence in individual bouquets and analyses based on biosynthetic motifs such as functional group, chain length, or basic carbon-backbone modification were used to reveal structural patterns. Mimetic pairs contain different scent bouquets, but also some compounds in common, whereas sympatric species, both mimetic and non-mimetic, have more distinct compound compositions. The compounds identified here may play a role in mate choice thus helping maintain species integrity in a butterfly genus characterized by pervasive interspecific gene flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Compounds occurring in only one sample analyzed are not listed in the tables of the main text because they were not included in the cluster analysis. However, SM Table S1 shows all identified compounds.

  2. The character ω denotes the aliphatic end of an aliphatic chain, while Δ is counted from the carboxylate head group.

    ile Δ is counted from the carboxylate head group.

References

  • Albre J, Liénard MA, Sirey TM, Schmidt S, Tooman LK, Carraher C, Greenwood DR, Löfstedt C, Newcomb RD (2012) Sex pheromone evolution is associated with differential regulation of the same desaturase gene in two genera of leafroller moths. PLoS Genet 8:e1002489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson J, Borg-Karlson AK, Wiklund C (2000) Sexual cooperation and conflict in butterflies: a male-transferred anti-aphrodisiac reduces harassment of recently mated females. Proc R Soc Lond B 267:1271–1275

    Article  CAS  Google Scholar 

  • Ando T, Inomata S-I, Yamamoto M (2004) Lepidopteran sex pheromones. In: Schulz S (ed) The chemistry of pheromones and other Semiochemicals I. Springer, Berlin Heidelberg, pp 51–96

    Chapter  Google Scholar 

  • Bacquet PMB, Brattström O, Wang H-L, Allen CE, Löfstedt C, Brakefield PM, Nieberding CM (2015) Selection on male sex pheromone composition contributes to butterfly reproductive isolation. Proc R Soc Lond B 282:20142734

    Article  CAS  Google Scholar 

  • Bates HW (1862) Contributions to an insect fauna of the Amazon valley. Lepidoptera: Heliconidae. Trans Linn Soc London 23:495–566

    Article  Google Scholar 

  • Becker HGO, Beckert R (2004) Organikum: Organisch-chemisches Grundpraktikum, 22nd edn. Wiley-VCH, Weinheim, p 540

    Google Scholar 

  • Becker LC, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler D, Marks JG, Shank RC, Slaga TJ, Snyder PW, Andersen FA (2012) Safety assessment of alkyl benzoates as used in cosmetics. Int J Toxicol 31:342S–372S

    Article  Google Scholar 

  • Beltrán M, Jiggins CD, Brower AVZ, Bermingham E, Mallet JLB (2007) Do pollen feeding, pupal mating and larval gregariousness have a single origin in Heliconius butterflies? Inferences from multilocus DNA sequence data. Biol J Linn Soc 92:221–239

    Article  Google Scholar 

  • Bestmann HJ, Kern F, Schäfer D, Witschel MC (1992) 3,4-Dihydroisocoumarins, a new class of Ant Trail pheromones. Angew Chem Int Ed 31:795–796

    Article  Google Scholar 

  • Blomberg SP, Garland T Jr, Ives AR, Crespi B (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745

    Article  PubMed  Google Scholar 

  • Buser HR, Arn H, Guerin P, Rauscher S (1983) Determination of double bond position in mono-unsaturated acetates by mass spectrometry of dimethyl disulfide adducts. Anal Chem 55:818–822

    Article  CAS  Google Scholar 

  • Chouteau M, Arias M, Joron M (2016) Warning signals are under positive frequency-dependent selection in nature. Proc Natl Acad Sci U S A 113:2164–2169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davey JW, Chouteau M, Barker SL, Maroja L, Baxter SW, Simpson F, Joron M, Mallet J, Dasmahapatra KK, Jiggins CD (2016) Major improvements to the Heliconius melpomene genome assembly used to confirm 10 chromosome fusion events in 6 million years of butterfly evolution. G3:g3-115

  • Ðorđević BS, Pljevljakušić DS, Šavikin KP, Stević TR, Bigović DJ (2014) Essential oil from blackcurrant buds as chemotaxonomy marker and antimicrobial agent. Chem Biodivers 11:1228–1240

    Article  PubMed  Google Scholar 

  • Eisner J, Meinwald J (1987) Alkaloid-derived pheromones and sexual selection in Lepidoptera. Pheromone Biochemistry. Academic Press, Orlando

  • Estrada C, Jiggins CD (2008) Interspecific sexual attraction because of convergence in warning colouration: is there a conflict between natural and sexual selection in mimetic species? J Evol Biol 21:749–760

    Article  CAS  PubMed  Google Scholar 

  • Estrada C, Yildizhan S, Schulz S, Gilbert LE (2010) Sex-specific chemical cues from immatures facilitate the evolution of mate guarding in Heliconius butterflies. Proc R Soc Lond B 277:407–413

    Article  CAS  Google Scholar 

  • Estrada C, Schulz S, Yildizhan S, Gilbert LE (2011) Sexual selection drives the evolution of antiaphrodisiac pheromones in butterflies. Evolution 65:2843–2854

    Article  PubMed  Google Scholar 

  • Francke W, Schulz S, Sinnwell V, König WA, Roisin Y (1989) Epoxytetrahydroedulan, a New Terpenoid from the Hairpencils of Euploea (Lep.: Danainae) Butterflies. Liebigs Ann Chem:1195–1201

  • Friendly M, Fox J, Friendly MM (2016) candisc: Visualizing generalized canonical discriminant and canonical correlation analysis. R package version 0.7-2

  • Gilbert LE (1976) Postmating female odor in Heliconius butterflies: a male-contributed antiaphrodisiac? Science 193:419–420

    Article  CAS  PubMed  Google Scholar 

  • Giraldo N, Salazar C, Jiggins CD, Bermingham E, Linares M (2008) Two sisters in the same dress: Heliconius cryptic species. BMC Evol Biol 8:324

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammer Ø, Harper DA, Ryan PD (2001) PAST-palaeontological statistics, ver. 1.89. Palaeontol. electronica 4

  • Honda Y, Honda K, Omura H (2006) Major components in the hairpencil secretion of a butterfly, Euploea mulciber (Lepidoptera, Danaidae): their origins and male behavioral responses to pyrrolizidine alkaloids. J Insect Physiol 52:1043–1053

    Article  CAS  PubMed  Google Scholar 

  • Jiggins CD (2008) Ecological speciation in mimetic butterflies. Bioscience 58:541–548

    Article  Google Scholar 

  • Kozak KM, Wahlberg N, Neild AFE, Dasmahapatra KK, Mallet J, Jiggins CD (2015) Multilocus species trees show the recent adaptive radiation of the mimetic Heliconius butterflies. Syst Biol 64:505–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunesch G, Zagatti P, Pouvreau A, Cassini R (1987) A fungal metabolite as the male wing gland pheromone of the bumble-bee wax moth, Aphomia sociella L. Z Naturforsch 42c:657–659

    Google Scholar 

  • Lassance J-M, Liénard MA, Antony B, Qian S, Fujii T, Tabata J, Ishikawa Y, Löfstedt C (2013) Functional consequences of sequence variation in the pheromone biosynthetic gene pgFAR for Ostrinia moths. Proc Natl Acad Sci U S A 110:3967–3972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liénard MA, Wang H-L, Lassance J-M, Löfstedt C (2014) Sex pheromone biosynthetic pathways are conserved between moths and the butterfly Bicyclus anynana. Nat Commun 5:3957

    Article  PubMed  PubMed Central  Google Scholar 

  • Mallet J, Barton NH (1989) Strong natural selection in a warning-color hybrid zone. Evolution 43:421–431

    Article  PubMed  Google Scholar 

  • McMillan WO, Jiggins CD, Mallet J (1997) What initiates speciation in passion-vine butterflies? Proc Natl Acad Sci U S A 94:8628–8633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meinwald J, Meinwald YC, Wheeler JW, Eisner T, Brower LP (1966) Major components in the exocrine secretion of a male butterfly Lycorea. Science 151:583–585

    Article  CAS  PubMed  Google Scholar 

  • Mérot C, Mavárez J, Evin A, Dasmahapatra KK, Mallet J, Lamas G, Joron M (2013) Genetic differentiation without mimicry shift in a pair of hybridizing Heliconius species (Lepidoptera: Nymphalidae). Biol J Linn Soc 109:830–847

    Article  Google Scholar 

  • Mérot C, Frérot B, Leppik E, Joron M (2015) Beyond magic traits: multimodal mating cues in Heliconius butterflies. Evolution 69:2891–2904

    Article  PubMed  Google Scholar 

  • Merrill RM, van Schooten B, Scott JA, Jiggins CD (2011) Pervasive genetic associations between traits causing reproductive isolation in Heliconius butterflies. Proc R Soc Lond B 278:511–518

    Article  Google Scholar 

  • Merrill RM, Naisbit RE, Mallet J, Jiggins CD (2013) Ecological and genetic factors influencing the transition between host-use strategies in sympatric Heliconius butterflies. J Evol Biol 26:1959–1967

    Article  CAS  PubMed  Google Scholar 

  • Merrill RM, Dasmahapatra KK, Davey JW, Dell'Aglio DD, Hanly JJ, Huber B, Jiggins CD, Joron M, Kozak KM, Llaurens V (2015) The diversification of Heliconius butterflies: what have we learned in 150 years? J Evol Biol 28:1417–1438

    Article  CAS  PubMed  Google Scholar 

  • Miyakado M, Meinwald J, Gilbert LE (1989) (R)-(Z,E)-9,11-Octadecadienolide: an intriguing lactone from Heliconius pachinus (Lepidoptera). Experientia 45:1006–1008

    Article  CAS  PubMed  Google Scholar 

  • More JD, Finney NS (2002) A simple and advantageous protocol for the oxidation of alcohols with o-iodoxybenzoic acid (IBX). Org Lett 4:3001–3003

    Article  CAS  PubMed  Google Scholar 

  • Morgan ED (2010) Biosynthesis in insects, 2nd edn. Royal Society of Chemistry, Cambridge

  • Muñoz AG, Salazar C, Castaño J, Jiggins CD, Linares M (2010) Multiple sources of reproductive isolation in a bimodal butterfly hybrid zone. J Evol Biol 23:1312–1320

    Article  PubMed  Google Scholar 

  • Nieberding CM, de Vos H, Schneider MV, Lassance J-M, Estramil N, Andersson J, Bång J, Hedenström E, Löfstedt C, Brakefield PM, Somers M (2008) The male sex pheromone of the butterfly Bicyclus anynana: towards an evolutionary analysis. PLoS One 3:e2751

    Article  PubMed  PubMed Central  Google Scholar 

  • Nieberding CM, Fischer K, Saastamoinen M, Allen CE, Wallin EA, Hedenström E, Brakefield PM (2012) Cracking the olfactory code of a butterfly: the scent of ageing. Ecol Lett 15:415–424

    Article  PubMed  Google Scholar 

  • Nishida R, Baker TC, Roelofs WL (1982) Hairpencil pheromone components of male oriental fruit moths, Grapholita molesta. J Chem Ecol 8:947–959

    Article  CAS  PubMed  Google Scholar 

  • Nishida R, Schulz S, Kim CS, Fukami H, Kuwahara Y, Honda K, Hayashi N (1996) Male sex pheromone of a giant danaine butterfly, Idea leuconoe. J Chem Ecol 22:949–972

    Article  CAS  PubMed  Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884

    Article  CAS  PubMed  Google Scholar 

  • Pankewitz F, Hilker M (2008) Polyketides in insects: ecological role of these widespread chemicals and evolutionary aspects of their biogenesis. Biol Rev 83:209–226

    Article  PubMed  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D and R Core Team (2017) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-131

  • Pliske TE, Eisner T (1969) Sex pheromone of the queen butterfly: biology. Science 164:1170–1172

    Article  CAS  PubMed  Google Scholar 

  • Revell LJ (2012) Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223

    Article  Google Scholar 

  • Rosser N, Phillimore AB, Huertas B, Willmott KR, Mallet J (2012) Testing historical explanations for gradients in species richness in heliconiine butterflies of tropical America. Biol J Linn Soc 105:479–497

    Article  Google Scholar 

  • Schulz S (1987) Die Chemie der Duftorgane männlicher Lepidopteren. Dissertation, University of Hamburg, Hamburg

  • Schulz S (2001) Composition of the silk lipids of the spider Nephila clavipes. Lipids 36:637–647

    Article  CAS  PubMed  Google Scholar 

  • Schulz S, Francke W, Boppré M (1988a) Carboxylic acids from hairpencils of male Amauris butterflies (Lep.: Danainae). Biol Chem Hoppe Seyler 369:633–638

    Article  CAS  PubMed  Google Scholar 

  • Schulz S, Francke W, Edgar JA, Schneider D (1988b) Volatile compounds from Androconial organs of Danaine and Ithomiine butterflies. Z Naturforsch sect C. J Biosci 43c:99–104

    Google Scholar 

  • Schulz S, Beccaloni G, Nishida R, Roisin YR, Vane-Wright I, McNeil JN (1998) 2,5-Dialkyltetrahydrofurans, common components of the cuticular lipids of Lepidoptera. Z Naturforsch 53c:107–116

    Google Scholar 

  • Schulz S, Beccaloni G, Brown KS Jr, Boppre M, Freitas AVL, Ockenfels P, Trigo JR (2004) Semiochemicals derived from pyrrolizidine alkaloids in male ithomiine butterflies (Lepidoptera: Nymphalidae Ithomiinae). Biochem Syst Ecol 32:699–713

    Article  CAS  Google Scholar 

  • Schulz S, Yildizhan S, Stritzke K, Estrada C, Gilbert LE (2007) Macrolides from the scent glands of the tropical butterflies Heliconius cydno and Heliconius pachinus. Org Biomol Chem 5:3434–3441

    Article  CAS  PubMed  Google Scholar 

  • Schulz S, Estrada C, Yildizhan S, Boppré M, Gilbert LE (2008) An antiaphrodisiac in Heliconius melpomene butterflies. J Chem Ecol 34:82–93

    Article  CAS  PubMed  Google Scholar 

  • Schulz S, Yildizhan S, van Loon JJA (2011) The biosynthesis of hexahydrofarnesylacetone in the butterfly Pieris brassicae. J Chem Ecol 37:360–363

    Article  CAS  PubMed  Google Scholar 

  • Schwander T, Arbuthnott D, Gries R, Gries G, Nosil P, Crespi B (2013) Hydrocarbon divergence and reproductive isolation in Timema stick insects. BMC Evol Biol 13:151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi A, Tsaur S-C, Coyne JA, Wu CI (2001) The nucleotide changes governing cuticular hydrocarbon variation and their evolution in Drosophila melanogaster. Proc Natl Acad Sci U S A 98:3920–3925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner JRG (1976) Adaptive radiation and convergence in subdivisions of the butterfly genus Heliconius (Lepidoptera: Nymphalidae). Zool J Linnean Soc 58:297–308

    Article  Google Scholar 

  • Wang H-L, Brattström O, Brakefield PM, Francke W, Löfstedt C (2014) Identification and biosynthesis of novel male specific esters in the wings of the tropical butterfly, Bicyclus martius sanaos. J Chem Ecol 40:549–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yildizhan S, van Loon J, Sramkova A, Ayasse M, Arsene C, ten Broeke C, Schulz S (2009) Aphrodisiac pheromones from the wings of the small cabbage white and large cabbage white butterflies, Pieris rapae and Pieris brassicae. Chembiochem 10:1666–1677

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

CS, CPD and ML were funded by the FIUR fund QDN-DG001. CC was funded by a Smithsonian Tropical Research Institute short term fellowship and the Torkel Weis-Fogh and Balfour-Browne Funds. CJ was funded by an ERC grant ‘SpeciationGenetics’ 339873.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Schulz.

Electronic supplementary material

ESM 1

(PDF 2686 kb)

ESM 2

(XLS 140 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mann, F., Vanjari, S., Rosser, N. et al. The Scent Chemistry of Heliconius Wing Androconia. J Chem Ecol 43, 843–857 (2017). https://doi.org/10.1007/s10886-017-0867-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-017-0867-3

Keywords

Navigation