Skip to main content

Advertisement

Log in

Myoepithelial Cells: Autocrine and Paracrine Suppressors of Breast Cancer Progression

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Host cellular paracrine regulation of tumor progression is an important determinant of tumor biology but one cell that has been ignored in this regulation is the myoepithelial cell. Myoepithelial cells surround normal ducts and precancerous lesions, especially of the breast and form a natural border separating proliferating epithelial cells from proliferating endothelial cells (angiogenesis). Myoepithelial cells may thus negatively regulate tumor invasion and metastasis. Whereas epithelial cells are susceptible targets for transforming events, myoepithelial cells are resistant. Therefore, it can be said that myoepithelial cells function as both autocrine as well as paracrine tumor suppressors. Our laboratory has found that myoepithelial cells secrete a number of suppressor molecules including high amounts of diverse proteinase inhibitors and angiogenic inhibitors but low amounts of proteinases and angiogenic factors compared to common malignant cell lines. This observation has been made in vitro, in mice, and in humans and suggests that myoepithelial cells exert pleiotropic suppressive effects on tumor progression. The gene expression profile of myoepithelial cells may explain the pronounced anti-invasive and anti-angiogenic effects of myoepithelial cells on carcinoma cells and may also account for the reduced malignancy of myoepithelial tumors, which are devoid of appreciable angiogenesis and invasive behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

aFGF:

acidic fibroblast growth factor

α1-AT:

alpha 1-antitrypsin

5-azaC:

5-azacytidine

bFGF:

basic fibroblast growth factor

CALLA:

common acute lymphocytic leukemia antigen

CAT:

chloramphenicol acetyl transferase

CGH:

comparative genomic hybridization

COL1A1:

type I collagen α1 chain

COL4A1:

type IV collagen α1 chain

COL4A2:

type IV collagen α2 chain

CM:

conditioned medium

dB-cAMP:

N6,2′-O-dibutyryladenosine 3′:5′-cyclic monophosphate

DCIS:

ductal carcinoma in situ

DF:

ductal lavage fluid

DMSO:

dimethylsulfoxide

EHS:

Engelbreth-Holm-Swarm

ER-α:

estrogen receptor-α

ER-β:

estrogen receptor-β

FCS:

fetal calf serum

FN1:

fibronectin

HB-ECGF:

heparin-binding endothelial cell growth factor

HGF:

hepatocyte growth factor

HIF-1α:

hypoxia-inducible factor-alpha

HMEC:

human mammary epithelial cells

HRE:

hypoxia response element

HRT:

hormone replacement therapy

HSPG2:

perlecan

iNOS:

inducible nitric oxide synthase

K-SFM:

keratinocyte serum-free medium

LOH:

loss of heterozygosity

MMP-9:

matrix metalloproteinase-9

MUC-1:

mucin-1

Na-But:

sodium butyrate

PAI-1:

plasminogen activator inhibitor-1

PD-ECGF:

platelet-derived endothelial cell growth factor

PlGF:

placental growth factor

PMA:

phorbol 12-myristate 13-acetate: PN-II, protease nexin-II

RA:

all trans retinoic acid

TIMP-1:

tissue inhibitor of metalloproteinase-1

TFGα:

transforming growth factor α

TGFβ:

transforming growth factor β

TNFα:

tumor necrosis factor α

UVE:

human umbilical vein endothelial cells

uPA:

urokinase-type plasminogen activator

VEGF:

vascular endothelial growth factor

vWf:

von Willebrand factor

References

  1. Cavenee WK. A siren song from tumor cells. J Clin Invest 1993;91:3.

    Article  PubMed  CAS  Google Scholar 

  2. Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 1991;64:327–36.

    Article  PubMed  CAS  Google Scholar 

  3. Safarians S, Sternlicht MD, Freiman CJ, Huaman JA, Barsky SH. The primary tumor is the primary source of metastasis in a human melanoma/SCID model: implications for the direct autocrine and paracrine epigenetic regulation of the metastatic process. Int J Cancer 1996;66:151–8.

    Article  PubMed  CAS  Google Scholar 

  4. Folkman J, Klagsbrun M. Angiogenic factors. Science 1987;235:442–7.

    PubMed  CAS  Google Scholar 

  5. Cornil I, Theodorescu D, Man S, Herlyn M, Jambrosic J, Kerbel RS. Fibroblast cell interactions with human melanoma cells affect tumor cell growth as a function of tumor progression. Proc Natl Acad Sci USA 1991;88:6028–32.

    Article  PubMed  CAS  Google Scholar 

  6. Sgroi DC, Teng S, Robinson G, Le Vangie R, Hudson JR, Elkahloun AG. In vivo gene expression profile analysis of human breast cancer progression. Cancer Res 1999;59:5656–61.

    PubMed  CAS  Google Scholar 

  7. Guelstein VI, Tchypsheva TA, Ermilova VD, Ljubimov AV. Myoepithelial and basement membrane antigens in benign and malignant human breast tumors. Int J Cancer 1993;53:269–77.

    PubMed  CAS  Google Scholar 

  8. Cutler LS. The role of extracellular matrix in the morphogenesis and differentiation of salivary glands. Adv Dent Res 1990;4:27–33.

    PubMed  CAS  Google Scholar 

  9. Sternlicht MD, Safarians S, Calcaterra TC, Barsky SH. Establishment and characterization of a novel human myoepithelial cell line and matrix-producing xenograft from a parotid basal cell adenocarcinoma. In Vitro Cell Dev Biol 1996;32:550–63.

    CAS  Google Scholar 

  10. Sternlicht MD, Kedeshian P, Shao ZM, Safarians S, Barsky SH. The human myoepithelial cell is a natural tumor suppressor. Clin Cancer Res 1997;3:1949–58.

    PubMed  CAS  Google Scholar 

  11. Nguyen M, Lee MC, Wang JL, Tomlinson JS, Shao ZM, Barsky SH. The human myoepithelial cell displays a multifaceted anti-angiogenic phenotype. Oncogene 2000;19:3449–59.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang M, Volpert O, Shi YH, Bouck N. Maspin is an angiogenesis inhibitor. Nat Med 2000;6:196–9.

    Article  PubMed  CAS  Google Scholar 

  13. Shao ZM, Radziszewski WJ, Barsky SH. Tamoxifen enhances myoepithelial cell suppression of human breast carcinoma progression by two different effector mechanisms. Cancer Lett 2000;157:133–44.

    Article  PubMed  CAS  Google Scholar 

  14. Andreasen PA, Georg B, Lund LR, Riccio A, Stacey SN. Plasminogen activator inhibitors: hormonally regulated serpins. Mol Cell Endocrinol 1990;68:1–19.

    Article  PubMed  CAS  Google Scholar 

  15. Albini A, Iwamoto Y, Kleinman HK, Martin GS, Aaronson SA, Kozlowski JM, et al. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 1987;47:3239–45.

    PubMed  CAS  Google Scholar 

  16. Kataoka H, Seguchi K, Iwamura T, Moriyama T, Nabeshima K, Koono M. Reverse-zymographic analysis of protease nexin-II/amyloid b protein precursor of human carcinoma cell lines, with special reference to the grade of differentiation and metastatic phenotype. Int J Cancer 1995;60:123–8.

    PubMed  CAS  Google Scholar 

  17. Narindrasorasak S, Lowery DE, Altman RA, Gonzalez-DeWhitt PA, Greenberg BD, Kisilevsky R. Characterization of high affinity binding between laminin and Alzheimer’s disease amyloid precursor proteins. Lab Invest 1992;67:643–52.

    PubMed  CAS  Google Scholar 

  18. Rao CN, Liu YY, Peavey CL, Woodley DT. Novel extracellular matrix-associated serine proteinase inhibitors from human skin fibroblasts. Arch Biochem Biophys 1995;317:311–4.

    Article  PubMed  CAS  Google Scholar 

  19. Zou Z, Anisowicz A, Hendrix MJC, Thor A, Neveu M, Sheng S, et al. Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science 1994;263:526–9.

    PubMed  CAS  Google Scholar 

  20. Hopkins PCR, Whisstock J. Function of maspin. Science 1994;265:1893–4.

    PubMed  CAS  Google Scholar 

  21. Pemberton PA, Wong DT, Gibson HL, Kiefer MC, Fitzpatrick PA, Sager R, et al. The tumor suppressor maspin does not undergo the stressed to relaxed transition or inhibit trypsin-like serine proteases: evidence that maspin is not a protease inhibitory serpin. J Biol Chem 1995;270:15832–7.

    Article  PubMed  CAS  Google Scholar 

  22. Sheng S, Pemberton PA, Sager R. Production, purification, and characterization of recombinant maspin proteins. J Biol Chem 1994;269:30988–93.

    PubMed  CAS  Google Scholar 

  23. Folkman J. Clinical applications of research on angiogenesis. N Engl J Med 1995;333:1757–63.

    Article  PubMed  CAS  Google Scholar 

  24. Roberts DD. Regulation of tumor growth and metastasis by thrombospondin-1. FASEB J 1996;10:1183–91.

    PubMed  CAS  Google Scholar 

  25. Weinstat-Saslow DL, Zabrenetzky VS, VanHoutte K, Frazier WA, Roberts DD, Steeg PS. Transfection of thrombospondin 1 complementary DNA into a human breast carcinoma cell line reduces primary tumor growth, metastatic potential, and angiogenesis. Cancer Res 1994;54:6504–11.

    PubMed  CAS  Google Scholar 

  26. Dairkee SH, Puett L, Hackett AJ. Expression of basal and luminal epithelial-specific keratins on normal, benign and malignant breast tissue. J Natl Cancer Inst 1988;80:691–5.

    PubMed  CAS  Google Scholar 

  27. Emerman JT, Wilkinson DA. Routine culturing of normal, dysplastic and malignant human mammary epithelial cells from small tissue samples. In Vitro Cell Dev Biol 1990;26:1186–94.

    PubMed  CAS  Google Scholar 

  28. Emerman JT, Eaves CJ. Lack of effect of hematopoietic growth factors on human breast epithelial cell growth in serum-free primary culture. Bone Marrow Transplant 1994;13:285–91.

    PubMed  CAS  Google Scholar 

  29. Rudland PS. Histochemical organization and cellular composition of ductal buds in developing human breast: evidence of cytochemical intermediate between epithelial and myoepithelial cells. J Histochem Cytochem 1991;39:1471–84.

    PubMed  CAS  Google Scholar 

  30. O’Hare MJ, Ormerod MG, Monaghan P, Lane EB, Gusterson, BA. Characterization in vitro of luminal and myoepithelial cells isolated from the human mammary gland by cell sorting. Differentiation 1991;46:209–21.

    PubMed  CAS  Google Scholar 

  31. Kedeshian P, Sternlicht MD, Nguyen M, Shao ZM, Barsky SH. Humatrix, a novel myoepithelial matrical gel with unique biochemical and biological properties. Cancer Lett 1998;123:215–26.

    Article  PubMed  CAS  Google Scholar 

  32. Barsky SH. Myoepithelial mRNA expression profiling reveals a common tumor-suppressor phenotype. Exp Mol Pathol 2003;74:113–22.

    Article  PubMed  CAS  Google Scholar 

  33. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumors. Nature 2000;406:747–52.

    Article  PubMed  CAS  Google Scholar 

  34. Sorlie T, Perou CM, Tibshirini R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001;98:10869–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanford H. Barsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barsky, S.H., Karlin, N.J. Myoepithelial Cells: Autocrine and Paracrine Suppressors of Breast Cancer Progression. J Mammary Gland Biol Neoplasia 10, 249–260 (2005). https://doi.org/10.1007/s10911-005-9585-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-005-9585-5

Key Words

Navigation