Skip to main content

Advertisement

Log in

Resistance to Endocrine Therapy: Are Breast Cancer Stem Cells the Culprits?

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

From a developmental point of view, tumors can be seen as aberrant versions of their tissue of origin. For example, tumors often partially retain differentiation markers of their tissue of origin and there is evidence that they contain cancer stem cells (CSCs) that drive tumorigenesis. In this review, we summarise current evidence that breast CSCs may partly explain endocrine resistance in breast cancer. In normal breast, the stem cells are known to possess a basal phenotype and to be mainly ERα−. If the hierarchy in breast cancer reflects this, the breast CSC may be endocrine resistant because it expresses very little ERα and can only respond to treatment by virtue of paracrine influences of neighboring, differentiated ERα+ tumor cells. Normal breast epithelial stem cells are highly dependent on the EGFR and other growth factor receptors and it may be that the observed increased growth factor receptor expression in endocrine-resistant breast cancers reflects an increased proportion of CSCs selected by endocrine therapies. There is evidence from a number of studies that breast CSCs are ERα− and EGFR+/HER2+, which would support this view. CSCs also express mesenchymal genes which are suppressed by ERα expression, further indicating the mutual exclusion between ERα+ cells and the CSCs. As we learn more about CSCs, differentiation and the expression and functional activity of the ERα in these cells in diverse breast tumor sub-types, it is hoped that our understanding will lead to new modalities to overcome the problem of endocrine resistance in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

Similar content being viewed by others

Abbreviations

CSC:

Cancer stem-like cells

ER:

Estrogen receptorα

EGFR:

Epidermal growth factor receptor

EMT:

Epithelial mesenchymal transition

LN:

Lymph node

ALDH1:

Aldehyde dehydrogenase 1

HDAC:

Histone deacetylase

DNMT:

DNA methyl transferase

References

  1. Shackleton M, et al. Generation of a functional mammary gland from a single stem cell. Nature 2006;439(7072):84–8.

    Article  PubMed  CAS  Google Scholar 

  2. Stingl J, et al. Purification and unique properties of mammary epithelial stem cells. Nature 2006;439(7079):993–7.

    PubMed  CAS  Google Scholar 

  3. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.

    Article  PubMed  CAS  Google Scholar 

  4. Kelly PN, et al. Tumor growth need not be driven by rare cancer stem cells. Science 2007;317(5836):337.

    Article  PubMed  CAS  Google Scholar 

  5. Quintana E, et al. Efficient tumour formation by single human melanoma cells. Nature 2008;456(7222):593–8.

    Article  PubMed  CAS  Google Scholar 

  6. Singh SK, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63(18):5821–8.

    PubMed  CAS  Google Scholar 

  7. Singh SK, et al. Identification of human brain tumour initiating cells. Nature 2004;432(7015):396–401.

    Article  PubMed  CAS  Google Scholar 

  8. Al-Hajj M, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100(7):3983–8.

    Article  PubMed  CAS  Google Scholar 

  9. Collins AT, et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65(23):10946–51.

    Article  PubMed  CAS  Google Scholar 

  10. O’Brien CA, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007;445(7123):106–10.

    Article  PubMed  CAS  Google Scholar 

  11. Ricci-Vitiani L, et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2007;445(7123):111–5.

    Article  PubMed  CAS  Google Scholar 

  12. Ponti D, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 2005;65(13):5506–11.

    Article  PubMed  CAS  Google Scholar 

  13. Storms RW, et al. Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci USA. 1999;96(16):9118–23.

    Article  PubMed  CAS  Google Scholar 

  14. Ginestier C, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67.

    Article  PubMed  CAS  Google Scholar 

  15. Fillmore CM, Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res. 2008;10(2):R25.

    Article  PubMed  CAS  Google Scholar 

  16. Horwitz KB, et al. Rare steroid receptor-negative basal-like tumorigenic cells in luminal subtype human breast cancer xenografts. Proc Natl Acad Sci USA. 2008;105(15):5774–9.

    Article  PubMed  CAS  Google Scholar 

  17. Howell A, Wardley AM. Overview of the impact of conventional systemic therapies on breast cancer. Endocr Relat Cancer. 2005;12(Suppl 1):S9–16.

    Article  PubMed  CAS  Google Scholar 

  18. Mallepell S, et al. Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proc Natl Acad Sci USA. 2006;103(7):2196–201.

    Article  PubMed  CAS  Google Scholar 

  19. Brisken C, et al. Prolactin controls mammary gland development via direct and indirect mechanisms. Dev Biol. 1999;210(1):96–106.

    Article  PubMed  CAS  Google Scholar 

  20. Coleman S, Silberstein GB, Daniel CW. Ductal morphogenesis in the mouse mammary gland: evidence supporting a role for epidermal growth factor. Dev Biol. 1988;127(2):304–15.

    Article  PubMed  CAS  Google Scholar 

  21. Brisken C, et al. A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc Natl Acad Sci USA. 1998;95(9):5076–81.

    Article  PubMed  CAS  Google Scholar 

  22. Keeling JW, et al. Oestrogen receptor alpha in female fetal, infant, and child mammary tissue. J Pathol. 2000;191(4):449–51.

    Article  PubMed  CAS  Google Scholar 

  23. Korach KS, et al. Estrogen receptor gene disruption: molecular characterization and experimental and clinical phenotypes. Recent Prog Horm Res. 1996;51:159–86, discussion 186–8.

    PubMed  CAS  Google Scholar 

  24. Russo J, et al. Pattern of distribution of cells positive for estrogen receptor alpha and progesterone receptor in relation to proliferating cells in the mammary gland. Breast Cancer Res Treat. 1999;53(3):217–27.

    Article  PubMed  CAS  Google Scholar 

  25. Clarke RB, et al. Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res. 1997;57(22):4987–91.

    PubMed  CAS  Google Scholar 

  26. Asselin-Labat ML, et al. Steroid hormone receptor status of mouse mammary stem cells. J Natl Cancer Inst. 2006;98(14):1011–4.

    Article  PubMed  CAS  Google Scholar 

  27. Sleeman KE, et al. Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J Cell Biol. 2007;176(1):19–26.

    Article  PubMed  CAS  Google Scholar 

  28. Raouf A, et al. Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell. 2008;3(1):109–18.

    Article  PubMed  CAS  Google Scholar 

  29. Shipitsin M, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell. 2007;11(3):259–73.

    Article  PubMed  CAS  Google Scholar 

  30. Sorlie T, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 2003;100(14):8418–23.

    Article  PubMed  CAS  Google Scholar 

  31. Dowsett M, et al. Benefit from adjuvant tamoxifen therapy in primary breast cancer patients according oestrogen receptor, progesterone receptor, EGF receptor and HER2 status. Ann Oncol. 2006;17(5):818–26.

    Article  PubMed  CAS  Google Scholar 

  32. Howell A, et al. Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet 2005;365(9453):60–2.

    Article  PubMed  CAS  Google Scholar 

  33. Gelber RD, et al. Adjuvant chemotherapy plus tamoxifen compared with tamoxifen alone for postmenopausal breast cancer: meta-analysis of quality-adjusted survival. Lancet 1996;347(9008):1066–71.

    Article  PubMed  CAS  Google Scholar 

  34. Giltnane JM, et al. Quantitative measurement of epidermal growth factor receptor is a negative predictive factor for tamoxifen response in hormone receptor positive premenopausal breast cancer. J Clin Oncol. 2007;25(21):3007–14.

    Article  PubMed  Google Scholar 

  35. Knowlden JM, et al. Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology 2003;144(3):1032–44.

    Article  PubMed  CAS  Google Scholar 

  36. Massarweh S, et al. Mechanisms of tumor regression and resistance to estrogen deprivation and fulvestrant in a model of estrogen receptor-positive, HER-2/neu-positive breast cancer. Cancer Res. 2006;66(16):8266–73.

    Article  PubMed  CAS  Google Scholar 

  37. Pancholi S, et al. ERBB2 influences the subcellular localization of the estrogen receptor in tamoxifen-resistant MCF-7 cells leading to the activation of AKT and p90RSK. Endocr Relat Cancer. 2008 Dec;15(4):985–1002.

    Article  PubMed  CAS  Google Scholar 

  38. Sarwar N, et al. Phosphorylation of ERalpha at serine 118 in primary breast cancer and in tamoxifen-resistant tumours is indicative of a complex role for ERalpha phosphorylation in breast cancer progression. Endocr Relat Cancer. 2006;13(3):851–61.

    Article  PubMed  CAS  Google Scholar 

  39. Hiscox S, et al. Elevated Src activity promotes cellular invasion and motility in tamoxifen resistant breast cancer cells. Breast Cancer Res Treat. 2006;97(3):263–74.

    Article  PubMed  CAS  Google Scholar 

  40. Campbell RA, et al. Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti-estrogen resistance. J Biol Chem. 2001;276(13):9817–24.

    Article  PubMed  CAS  Google Scholar 

  41. Hebbard L, et al. CD44 expression and regulation during mammary gland development and function. J Cell Sci. 2000;113(Pt 14):2619–30.

    PubMed  CAS  Google Scholar 

  42. Farnie G, et al. Novel cell culture technique for primary ductal carcinoma in situ: role of Notch and epidermal growth factor receptor signaling pathways. J Natl Cancer Inst. 2007;99(8):616–27.

    Article  PubMed  CAS  Google Scholar 

  43. Ginestier C, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67.

    Article  PubMed  CAS  Google Scholar 

  44. Korkaya H, et al. HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 2008;27(47):6120–30.

    Article  PubMed  CAS  Google Scholar 

  45. Magnifico A, et al. Tumor-initiating cells of HER2-positive carcinoma cell lines express the highest oncoprotein levels and are Trastuzumab sensitive. Clin Cancer Res. 2009 (in press).

  46. Li X, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100(9):672–9.

    Article  PubMed  CAS  Google Scholar 

  47. Yu F, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007;131(6):1109–23.

    Article  PubMed  CAS  Google Scholar 

  48. Dontu G, et al. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 2004;6(6):R605–R615.

    Article  PubMed  CAS  Google Scholar 

  49. Stylianou S, Clarke RB, Brennan K. Aberrant activation of notch signaling in human breast cancer. Cancer Res. 2006;66(3):1517–25.

    Article  PubMed  CAS  Google Scholar 

  50. Rizzo P, et al. Cross-talk between notch and the estrogen receptor in breast cancer suggests novel therapeutic approaches. Cancer Res. 2008;68(13):5226–35.

    Article  PubMed  CAS  Google Scholar 

  51. Osipo C, et al. ErbB-2 inhibition activates Notch-1 and sensitizes breast cancer cells to a gamma-secretase inhibitor. Oncogene 2008;27(37):5019–32.

    Article  PubMed  CAS  Google Scholar 

  52. Phillips TM, McBride WH, Pajonk F. The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst. 2006;98(24):1777–85.

    PubMed  Google Scholar 

  53. Mani SA, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008;133(4):704–15.

    Article  PubMed  CAS  Google Scholar 

  54. Hiscox S, et al. Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of beta-catenin phosphorylation. Int J Cancer. 2006;118(2):290–301.

    Article  PubMed  CAS  Google Scholar 

  55. Hiscox S, et al. Src kinase promotes adhesion-independent activation of FAK and enhances cellular migration in tamoxifen-resistant breast cancer cells. Clin Exp Metastasis. 2007;24(3):157–67.

    Article  PubMed  CAS  Google Scholar 

  56. Hiscox S, et al. Dual targeting of Src and ER prevents acquired antihormone resistance in breast cancer cells. Breast Cancer Res Treat. 2008 May 21. doi:10.1007/s10549-008-0058-6.

  57. Zhou Y, et al. Enhanced NF kappa B and AP-1 transcriptional activity associated with antiestrogen resistant breast cancer. BMC Cancer. 2007;7:59.

    Article  PubMed  CAS  Google Scholar 

  58. Borley AC, et al. Anti-oestrogens but not oestrogen deprivation promote cellular invasion in intercellular adhesion-deficient breast cancer cells. Breast Cancer Res. 2008;10(6):R103.

    Article  PubMed  CAS  Google Scholar 

  59. Hiscox S, Jiang WG. Regulation of endothelial CD44 expression and endothelium-tumour cell interactions by hepatocyte growth factor/scatter factor. Biochem Biophys Res Commun. 1997;233(1):1–5.

    Article  PubMed  CAS  Google Scholar 

  60. Dhasarathy A, Kajita M, Wade PA. The transcription factor snail mediates epithelial to mesenchymal transitions by repression of estrogen receptor-alpha. Mol Endocrinol. 2007;21(12):2907–18.

    Article  PubMed  CAS  Google Scholar 

  61. Ye Y, et al. ERalpha suppresses slug expression directly by transcriptional repression. Biochem J. 2008;416(2):179–87.

    Article  PubMed  CAS  Google Scholar 

  62. Perou CM, et al. Molecular portraits of human breast tumours. Nature 2000;406(6797):747–52.

    Article  PubMed  CAS  Google Scholar 

  63. Sims AH, et al. Origins of breast cancer subtypes and therapeutic implications. Nat Clin Pract Oncol. 2007;4(9):516–25.

    Article  PubMed  CAS  Google Scholar 

  64. Bloushtain-Qimron N, et al. Cell type-specific DNA methylation patterns in the human breast. Proc Natl Acad Sci USA. 2008;105(37):14076–81.

    Article  PubMed  CAS  Google Scholar 

  65. Lower EE, et al. Impact of metastatic estrogen receptor and progesterone receptor status on survival. Breast Cancer Res Treat. 2005;90(1):65–70.

    Article  PubMed  CAS  Google Scholar 

  66. Fehm T, et al. ERalpha-status of disseminated tumour cells in bone marrow of primary breast cancer patients. Breast Cancer Res. 2008;10(5):R76.

    Article  PubMed  CAS  Google Scholar 

  67. Lapidus RG, et al. Methylation of estrogen and progesterone receptor gene 5′ CpG islands correlates with lack of estrogen and progesterone receptor gene expression in breast tumors. Clin Cancer Res. 1996;2(5):805–10.

    PubMed  CAS  Google Scholar 

  68. Ottaviano YL, et al. Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res. 1994;54(10):2552–5.

    PubMed  CAS  Google Scholar 

  69. Badia E, et al. Tamoxifen resistance and epigenetic modifications in breast cancer cell lines. Curr Med Chem. 2007;14(28):3035–45.

    Article  PubMed  CAS  Google Scholar 

  70. Croker AK, et al. High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med. 2008 Aug 4 (in press).

  71. Sheridan C, et al. CD44+/CD24− breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res. 2006;8(5):R59.

    Article  PubMed  CAS  Google Scholar 

  72. Ouhtit A, et al. In vivo evidence for the role of CD44s in promoting breast cancer metastasis to the liver. Am J Pathol. 2007;171(6):2033–9.

    Article  PubMed  CAS  Google Scholar 

  73. Hiscox S, et al. Chronic exposure to fulvestrant promotes overexpression of the c-Met receptor in breast cancer cells: implications for tumour–stroma interactions. Endocr Relat Cancer. 2006;13(4):1085–99.

    Article  PubMed  CAS  Google Scholar 

  74. Hiscox S, et al. Tamoxifen resistance in breast cancer cells is accompanied by an enhanced motile and invasive phenotype: inhibition by gefitinib (‘Iressa’, ZD1839). Clin Exp Metastasis. 2004;21(3):201–12.

    Article  PubMed  CAS  Google Scholar 

  75. Mine S, et al. Hepatocyte growth factor enhances adhesion of breast cancer cells to endothelial cells in vitro through up-regulation of CD44. Exp Cell Res. 2003;288(1):189–97.

    Article  PubMed  CAS  Google Scholar 

  76. Harrell JC, et al. Estrogen receptor positive breast cancer metastasis: altered hormonal sensitivity and tumor aggressiveness in lymphatic vessels and lymph nodes. Cancer Res. 2006;66(18):9308–15.

    Article  PubMed  CAS  Google Scholar 

  77. Harrell JC, et al. Estrogen insensitivity in a model of estrogen receptor positive breast cancer lymph node metastasis. Cancer Res. 2007;67(21):10582–91.

    Article  PubMed  CAS  Google Scholar 

  78. Kabos P, DW, Elias A, Horwitz KB, Sartorius CA. The chemoresistant population of luminal subtype human breast cancer cells expresses a basal phenotype. San Antonio Breast Cancer Symposium Proceedings, 2008. Abstract presentation.

  79. Farmer P, et al. A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med. 2009;15(1):68–74.

    Article  PubMed  CAS  Google Scholar 

  80. Calabrese C, et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007;11(1):69–82.

    Article  PubMed  CAS  Google Scholar 

  81. Bao S, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 2006;66(16):7843–8.

    Article  PubMed  CAS  Google Scholar 

  82. Sharma D, et al. Release of methyl CpG binding proteins and histone deacetylase 1 from the Estrogen receptor alpha (ER) promoter upon reactivation in ER-negative human breast cancer cells. Mol Endocrinol. 2005;19(7):1740–51.

    Article  PubMed  CAS  Google Scholar 

  83. Zhou Q, Atadja P, Davidson NE. Histone deacetylase inhibitor LBH589 reactivates silenced estrogen receptor alpha (ER) gene expression without loss of DNA hypermethylation. Cancer Biol Ther. 2007;6(1):64–9.

    PubMed  CAS  Google Scholar 

  84. Cameron EE, et al. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 1999;21(1):103–7.

    Article  PubMed  CAS  Google Scholar 

  85. Lyko F, Brown R. DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst. 2005;97(20):1498–506.

    PubMed  CAS  Google Scholar 

  86. Bovenzi V, Momparler RL. Antineoplastic action of 5-aza-2′-deoxycytidine and histone deacetylase inhibitor and their effect on the expression of retinoic acid receptor beta and estrogen receptor alpha genes in breast carcinoma cells. Cancer Chemother Pharmacol. 2001;48(1):71–6.

    Article  PubMed  CAS  Google Scholar 

  87. Ferguson AT, et al. Demethylation of the estrogen receptor gene in estrogen receptor-negative breast cancer cells can reactivate estrogen receptor gene expression. Cancer Res. 1995;55(11):2279–83.

    PubMed  CAS  Google Scholar 

  88. Yang X, et al. Transcriptional activation of estrogen receptor alpha in human breast cancer cells by histone deacetylase inhibition. Cancer Res. 2000;60(24):6890–4.

    PubMed  CAS  Google Scholar 

  89. Yang X, et al. Synergistic activation of functional estrogen receptor (ER)-alpha by DNA methyltransferase and histone deacetylase inhibition in human ER-alpha-negative breast cancer cells. Cancer Res. 2001;61(19):7025–9.

    PubMed  CAS  Google Scholar 

  90. Fan J, et al. ER alpha negative breast cancer cells restore response to endocrine therapy by combination treatment with both HDAC inhibitor and DNMT inhibitor. J Cancer Res Clin Oncol. 2008;134(8):883–90.

    Article  PubMed  CAS  Google Scholar 

  91. Zhou Q, Shaw PG, Davidson NE. Inhibition of histone deacetylase suppresses EGF signaling pathways by destabilizing EGFR mRNA in ER-negative human breast cancer cells. Breast Cancer Res Treat, 2008 Aug 6. doi:10.1007/s10549-008-0148-5.

  92. Rayala SK, Molli PR, Kumar R. Nuclear p21-activated kinase 1 in breast cancer packs off tamoxifen sensitivity. Cancer Res. 2006;66(12):5985–8.

    Article  PubMed  CAS  Google Scholar 

  93. Balasenthil S, et al. p21-activated kinase-1 signaling mediates cyclin D1 expression in mammary epithelial and cancer cells. J Biol Chem. 2004;279(2):1422–8.

    Article  PubMed  CAS  Google Scholar 

  94. Holm C, et al. Association between Pak1 expression and subcellular localization and tamoxifen resistance in breast cancer patients. J Natl Cancer Inst. 2006;98(10):671–80.

    PubMed  CAS  Google Scholar 

  95. Munster PN, et al. Phase II trial of vorinostat, a histone deacetylase inhibitor to restore the hormone sensitivity to the anti-estrogen tamoxifen in patients with advanced breast cancer having failed prior aromatase inhibitor therapy. J Clin Oncol. 2008;26(May 20 suppl):abstr 3501.

Download references

Acknowledgements

Ciara S. O’Brien is a Cancer Research UK Clinical Training Fellow and Sacha Howell is funded by the Christie Hospital NHS Trust Endowments. Gillian Farnie and Robert Clarke are funded by Breast Cancer Campaign grants 2008MaySF01 and 2006MaySF01, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Clarke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Brien, C.S., Howell, S.J., Farnie, G. et al. Resistance to Endocrine Therapy: Are Breast Cancer Stem Cells the Culprits?. J Mammary Gland Biol Neoplasia 14, 45–54 (2009). https://doi.org/10.1007/s10911-009-9115-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-009-9115-y

Keywords

Navigation