Skip to main content
Log in

A New Ghost Cell/Level Set Method for Moving Boundary Problems: Application to Tumor Growth

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we present a ghost cell/level set method for the evolution of interfaces whose normal velocity depend upon the solutions of linear and nonlinear quasi-steady reaction-diffusion equations with curvature-dependent boundary conditions. Our technique includes a ghost cell method that accurately discretizes normal derivative jump boundary conditions without smearing jumps in the tangential derivative; a new iterative method for solving linear and nonlinear quasi-steady reaction-diffusion equations; an adaptive discretization to compute the curvature and normal vectors; and a new discrete approximation to the Heaviside function. We present numerical examples that demonstrate better than 1.5-order convergence for problems where traditional ghost cell methods either fail to converge or attain at best sub-linear accuracy. We apply our techniques to a model of tumor growth in complex, heterogeneous tissues that consists of a nonlinear nutrient equation and a pressure equation with geometry-dependent jump boundary conditions. We simulate the growth of glioblastoma (an aggressive brain tumor) into a large, 1 cm square of brain tissue that includes heterogeneous nutrient delivery and varied biomechanical characteristics (white matter, gray matter, cerebrospinal fluid, and bone), and we observe growth morphologies that are highly dependent upon the variations of the tissue characteristics—an effect observed in real tumor growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbott, R.G., Forrest, S., Pienta, K.J.: Simulating the hallmarks of cancer. Artif. Life 12(4), 617–634 (2006). doi:10.1162/artl.2006.12.4.617

    Article  Google Scholar 

  2. Adalsteinsson, D., Sethian, J.A.: The fast construction of extension velocities in level set methods. J. Comput. Phys. 148(1), 2–22 (1999). doi:10.1006/jcph.1998.6090

    Article  MATH  MathSciNet  Google Scholar 

  3. Adam, J.: General aspects of modeling tumor growth and the immune response. In: Adam, J., Bellomo, N. (eds.) A Survey of Models on Tumor Immune Systems Dynamics, pp. 15–87. Birkhäuser, Boston (1996)

    Google Scholar 

  4. Ambrosi, D., Preziosi, L.: On the closure of mass balance models for tumor growth. Math. Models Methods Appl. Sci. 12(5), 737–754 (2002). doi:10.1142/S0218202502001878

    Article  MATH  MathSciNet  Google Scholar 

  5. Anderson, A.R.A., Weaver, A.M., Cummings, P.T., Quaranta, V.: Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127(5), 905–915 (2006). doi:10.1016/j.cell.2006.09.042

    Article  Google Scholar 

  6. Araujo, R.P., McElwain, D.L.S.: A history of the study of solid tumor growth: The contribution of mathematical modeling. Bull. Math. Biol. 66(5), 1039–1091 (2004). doi:10.1016/j.bulm.2003.11.002

    Article  MathSciNet  Google Scholar 

  7. Bellomo, N., de Angelis, E., Preziosi, L.: Multiscale modelling and mathematical problems related to tumor evolution and medical therapy. J. Theor. Med. 5(2), 111–136 (2003). doi:10.1080/1027336042000288633

    Article  MATH  Google Scholar 

  8. Byrne, H., Preziosi, L.: Modelling solid tumour growth using the theory of mixtures. Math. Med. Biol. 20(4), 341–366 (2003). doi:10.1093/imammb/20.4.341

    Article  MATH  MathSciNet  Google Scholar 

  9. Byrne, H.M., Alarcón, T., Owen, M.R., Webb, S.D., Maini, P.K.: Modeling aspects of cancer dynamics: A review. Philos. Trans. R. Soc. A 364(1843), 1563–1578 (2006). doi:10.1098/rsta.2006.1786

    Article  Google Scholar 

  10. Chaplain, M.A.J., Graziano, L., Preziosi, L.: Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development. Math. Med. Biol. 23(3), 192–229 (2006). doi:10.1093/imammb/dql009

    Article  Google Scholar 

  11. Chatterjee, C., Chong, E.K.P.: Efficient algorithms for finding the centers of conics and quadrics in noisy data. Pattern. Recogn. 30(5), 673–684 (1997). doi:10.1016/S0031-3203(96)00122-7

    Article  Google Scholar 

  12. Cowles, G., Martinelli, L.: Control theory based shape design for the incompressible Navier-Stokes equations. Int. J. Comput. Fluid Dyn. 17(6), 499–514 (2003). doi:10.1080/10618560310001614773

    Article  MATH  MathSciNet  Google Scholar 

  13. Cristini, V., Lowengrub, J.S., Nie, Q.: Nonlinear simulation of tumor growth. J. Math. Biol. 46, 191–224 (2003). doi:10.1007/s00285-002-0174-6

    Article  MATH  MathSciNet  Google Scholar 

  14. Engquist, B., Tornberg, A.K., Tsai, R.: Discretization of Dirac delta functions in level set methods. J. Comput. Phys. 207(1), 28–51 (2005). doi:10.1016/j.jcp.2004.09.018

    Article  MATH  MathSciNet  Google Scholar 

  15. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid Method). J. Comput. Phys. 152(2), 457–492 (1999). doi:10.1006/jcph.1999.6236

    Article  MATH  MathSciNet  Google Scholar 

  16. Frieboes, H.B., Lowengrub, J.S., Wise, S., Zheng, X., Macklin, P., Bearer, E.L., Cristini, V.: Computer simulation of glioma growth and morphology. Neuro Image 37(S1), S59–S70 (2007). doi:10.1016/j.neuroimage.2007.03.008

    Google Scholar 

  17. Frieboes, H.B., Wise, S.M., Lowengrub, J.S., Cristini, V.: Three-dimensional diffuse-interface simulation of multispecies tumor growth-II: Investigation of tumor invasion. Bull. Math. Biol. (2008, in press)

  18. Galaris, D., Barbouti, A., Korantzopoulos, P.: Oxidative stress in hepatic ischemia-reperfusion injury: the role of antioxidants and iron chelating compounds. Curr. Pharm. Des. 12(23), 2875–2890 (2006). doi:10.2174/138161206777947614

    Article  Google Scholar 

  19. Gibou, F., Fedkiw, R.: A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem. J. Comput. Phys. 202(2), 577–601 (2005). doi:10.1016/j.jcp.2004.07.018

    Article  MATH  MathSciNet  Google Scholar 

  20. Gibou, F., Fedkiw, R., Caflisch, R., Osher, S.: A level set approach for the numerical simulation of dendritic growth. J. Sci. Comput. 19(1–3), 183–199 (2003). doi:10.1023/A:1025399807998

    Article  MATH  MathSciNet  Google Scholar 

  21. Gibou, F., Fedkiw, R., Cheng, L.T., Kang, M.: A second order accurate symmetric discretization of the Poisson equation on irregular domains. J. Comput. Phys. 176(1), 205–227 (2002). doi:10.1006/jcph.2001.6977

    Article  MATH  MathSciNet  Google Scholar 

  22. Glimm, J., Marchesin, D., McBryan, O.: A numerical-method for 2 phase flow with an unstable interface. J. Comput. Phys. 39, 179–200 (1981). doi:10.1016/0021-9991(81)90144-3

    Article  MATH  MathSciNet  Google Scholar 

  23. Gottlieb, S., Shu, C.W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67(221), 73–85 (1997). doi:10.1090/S0025-5718-98-00913-2

    MathSciNet  Google Scholar 

  24. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001). doi:10.1137/S003614450036757X

    Article  MATH  MathSciNet  Google Scholar 

  25. Hallett, A.H., Ma, Y., Yin, Y.P.: Hybrid algorithms with automatic switching for solving nonlinear equation systems. J. Econ. Dyn. Control 20(6), 1051–1071 (1996). doi:10.1016/0165-1889(95)00889-6

    Article  MATH  Google Scholar 

  26. Hogea, C.S., Murray, B.T., Sethian, J.A.: Simulating complex tumor dynamics from avascular to vascular growth using a general level-set method. J. Math. Biol. 53(1), 86–134 (2006). doi:10.1007/s00285-006-0378-2

    Article  MATH  MathSciNet  Google Scholar 

  27. Jiang, G.S., Peng, D.: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21(6), 2126–2143 (2000). doi:10.1137/S106482759732455X

    Article  MATH  MathSciNet  Google Scholar 

  28. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(2), 202–228 (1996). doi:10.1006/jcph.1996.0130

    Article  MATH  MathSciNet  Google Scholar 

  29. Kloner, R.A., Jennings, R.B.: Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 1. Circulation 104(24), 2981–2989 (2001)

    Article  Google Scholar 

  30. LeVeque, R.J., Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31(4), 1019–1044 (1994). doi:10.1137/0731054

    Article  MATH  MathSciNet  Google Scholar 

  31. Lin, P.T., Baker, T.J., Martinelli, L., Jameson, A.: Two-dimensional implicit time-dependent calculations on adaptive unstructured meshes with time evolving boundaries. Int. J. Numer. Methods Fluids 50(2), 199–218 (2006). doi:10.1002/fld.1050

    Article  MATH  Google Scholar 

  32. Liu, X.D., Fedkiw, R., Kang, M.: A boundary condition capturing method for Poisson’s equation on irregular domains. J. Comput. Phys. 160(1), 151–178 (2000). doi:10.1006/jcph.2000.6444

    Article  MATH  MathSciNet  Google Scholar 

  33. Lowengrub, J.S., Macklin, P.: A centimeter-scale nonlinear model of tumor growth in complex, heterogeneous tissues. J. Math. Biol. (2008, in press)

  34. Macklin, P.: Numerical simulation of tumor growth and chemotherapy. M.S. thesis, University of Minnesota School of Mathematics (2003)

  35. Macklin, P.: Toward computational oncology: nonlinear simulation of centimeter-scale tumor growth in complex, heterogeneous tissues. Ph.D. dissertation, University of California, Irvine Department of Mathematics (2007)

  36. Macklin, P., Lowengrub, J.S.: Evolving interfaces via gradients of geometry-dependent interior Poisson problems: application to tumor growth. J. Comput. Phys. 203(1), 191–220 (2005). doi:10.1016/j.jcp.2004.08.010

    Article  MATH  MathSciNet  Google Scholar 

  37. Macklin, P., Lowengrub, J.S.: An improved geometry-aware curvature discretization for level set methods: application to tumor growth. J. Comput. Phys. 215(2), 392–401 (2006). doi:10.1016/j.jcp.2005.11.016

    Article  MATH  MathSciNet  Google Scholar 

  38. Macklin, P., Lowengrub, J.S.: Nonlinear simulation of the effect of microenvironment on tumor growth. J. Theor. Biol. 245(4), 677–704 (2007). doi:10.1016/j.jtbi.2006.12.004

    Article  MathSciNet  Google Scholar 

  39. Macklin, P., McDougall, S., Anderson, A.R.A., Chaplain, M.A.J., Cristini, V., Lowengrub, J.S.: Multiscale modelling and nonlinear simulation of vascular tumour growth. J. Math. Biol. (2008, in press)

  40. Malladi, R., Sethian, J.A., Vemuri, B.C.: A fast level set based algorithm for topology-independent shape modeling. J. Math. Imaging Vis. 6(2–3), 269–289 (1996). doi:10.1007/BF00119843

    Article  MathSciNet  Google Scholar 

  41. McMullen, M.S., Jameson, A.: The computational efficiency of non-linear frequency domain methods. J. Comput. Phys. 212(2), 637–661 (2006). doi:10.1016/j.jcp.2005.07.021

    Article  MATH  Google Scholar 

  42. Osher, S., Fedkiw, R.: Level set methods: An overview and some recent results. J. Comput. Phys. 169(2), 463–502 (2001). doi:10.1006/jcph.2000.6636

    Article  MATH  MathSciNet  Google Scholar 

  43. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2002)

    Google Scholar 

  44. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988). doi:10.1016/0021-9991(88)90002-2

    Article  MATH  MathSciNet  Google Scholar 

  45. Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-Based fast local level set method. J. Comput. Phys. 155(2), 410–438 (1999). doi:10.1006/jcph.1999.6345

    Article  MATH  MathSciNet  Google Scholar 

  46. Quaranta, V., Weaver, A.M., Cummings, P.T., Anderson, A.R.A.: Mathematical modeling of cancer: The future of prognosis and treatment. Clin. Chim. Acta 357(2), 173–179 (2005). doi:10.1016/j.cccn.2005.03.023

    Article  Google Scholar 

  47. Sanga, S., Sinek, J.P., Frieboes, H.B., Fruehauf, J.P., Cristini, V.: Mathematical modeling of cancer progression and response to chemotherapy. Expert Rev. Anticancer Ther. 6(10), 1361–1376 (2006). doi:10.1586/14737140.6.10.1361

    Article  Google Scholar 

  48. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  49. Sethian, J.A., Smereka, P.: Level set methods for fluid interfaces. Annu. Rev. Fluid Mech. 35(1), 341–372 (2003). doi:10.1146/annurev.fluid.35.101101.161105

    Article  MathSciNet  Google Scholar 

  50. Sleijpen, G.L.G., van der Vorst, H.A., Fokkema, D.R.: Bicgstab() and other hybrid Bi-CG methods. Numer. Algorithms 1(7), 75–109 (1994). doi:10.1007/BF02141261

    Article  Google Scholar 

  51. Sussman, M., Fatemi, E.: An efficient, interface preserving level set re-distancing algorithm and its application to interfacial incompressible fluid flow. SIAM J. Sci. Comput. 20(4), 1165–1191 (1999). doi:10.1137/S1064827596298245

    Article  MATH  MathSciNet  Google Scholar 

  52. Vrahatis, M.N., Magoulas, G.D., Plagianakos, V.P.: From linear to nonlinear iterative methods. Appl. Numer. Math. 45(1), 59–77 (2003). doi:10.1016/S0168-9274(02)00235-0

    Article  MATH  MathSciNet  Google Scholar 

  53. Wise, S.M., Lowengrub, J.S., Frieboes, H.B., Cristini, V.: Nonlinear simulation of three-dimensional multispecies tumor growth-I: Model and numerical method. J. Theor. Biol. (2008, to appear)

  54. Yu, S., Zhou, Y., Wei, G.W.: Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces. J. Comput. Phys. (2007). doi:10.1016/j.jcp.2006.10.030

  55. Zhao, H.K., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Comput. Phys. 127(1), 179–195 (1996). doi:10.1006/jcph.1996.0167

    Article  MATH  MathSciNet  Google Scholar 

  56. Zheng, X., Wise, S.M., Cristini, V.: Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level set method. Bull. Math. Biol. 67(2), 211–259 (2005). doi:10.1016/j.bulm.2004.08.001

    Article  MathSciNet  Google Scholar 

  57. Zhou, Y.C., Wei, G.W.: On the ficticious-domain and interpolation formulations of the matched interface and boundary (MIB) method. J. Comput. Phys. 219(1), 228–246 (2006). doi:10.1016/j.jcp.2006.03.027

    Article  MATH  MathSciNet  Google Scholar 

  58. Zhou, Y.C., Zhao, S., Feig, M., Wei, G.W.: High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources. J. Comput. Phys. 213(1), 1–30 (2006). doi:10.1016/j.jcp.2005.07.022

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Lowengrub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macklin, P., Lowengrub, J.S. A New Ghost Cell/Level Set Method for Moving Boundary Problems: Application to Tumor Growth. J Sci Comput 35, 266–299 (2008). https://doi.org/10.1007/s10915-008-9190-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9190-z

Keywords

Navigation