Skip to main content
Log in

Solution of the Feedback Control Problem in the Mathematical Model of Leukaemia Therapy

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

A mathematical model of leukaemia therapy based on the Gompertzian law of cell growth is investigated. The effect of the medicine on the leukaemia and normal cells is described in terms of therapy functions. A feedback control problem with the purpose of minimizing the number of the leukaemia cells while retaining as much as possible the number of normal cells is considered. This problem is reduced to solving the nonlinear Hamilton–Jacobi–Bellman partial differential equation. The feedback control synthesis is obtained by constructing an exact analytical solution to the corresponding Hamilton–Jacobi–Bellman equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aranjo, R.P., Mcelwain, D.G.: A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull. Math. Biol. 66, 1039–1091 (2004)

    Article  MathSciNet  Google Scholar 

  2. Afenya, E.K.: Mathematical models of cancer and their relevant insights. In: Tan, W.-Y., Hanin, L. (eds.) Handbook of Cancer Models with Applications. Ser. Math. Biology and Medicine, vol. 9, pp. 173–223. World Scientific, Singapore (2008)

    Chapter  Google Scholar 

  3. Rubinow, S.I., Lebowitz, J.L.: A mathematical model of neutrophil production and control in normal man. J. Math. Biol. 1, 187–225 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Rubinow, S.I., Lebowitz, J.L.: A mathematical model of the acute myeloblastic leukemic state in man. Biophys. J. 16, 897–910 (1976)

    Article  Google Scholar 

  5. Rubinow, S.I., Lebowitz, J.L.: A mathematical model of the chemotherapeutic treatment of acute myeloblastic leukemia. Biophys. J. 16, 1257–1271 (1976)

    Article  Google Scholar 

  6. Swan, G.W., Vincent, T.L.: Optimal control analysis in the chemotherapy of IgG multiple myeloma. Bull. Math. Biol. 39, 317–337 (1977)

    MATH  Google Scholar 

  7. Afenya, E.K., Calderón, C.P.: A brief look at a normal cell decline and inhibition in acute leukemia. J. Can. Det. Prev. 20(3), 171–179 (1996)

    Google Scholar 

  8. Frenzen, C.L., Murray, J.D.: A cell kinetics justification for Gompertz equation. SIAM J. Appl. Math. 46, 614–624 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gyllenberg, M., Webb, G.F.: Quiescence as an explanation of Gompertzian tumor growth. Growth Dev. Aging 53, 25–33 (1989)

    Google Scholar 

  10. Kendal, W.S.: Gompertzian growth as a consequence of tumor heterogeneity. Math. Biosci. 73, 103–107 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Laird, A.K.: Dynamics of tumor growth: comparison of growth and cell population dynamics. Math. Biosci. 185, 153–167 (2003)

    Article  MathSciNet  Google Scholar 

  12. Guiot, C., Degiorgis, P.G., Delsanto, P.P., Gabriele, P., Deisboeck, T.S.: Does tumour growth follow a universal law? J. Theor. Biol. 225, 147–151 (2003)

    Article  MathSciNet  Google Scholar 

  13. Afenya, E.K.: Acute leukemia and chemotherapy: a modeling viewpoint. Math. Biosci. 138, 79–100 (1996)

    Article  MATH  Google Scholar 

  14. Antipov, A.V., Bratus, A.S.: Mathematical model of optimal chemotherapy strategy with allowance for cell population dynamics in a heterogenous tumor. Comput. Math. Math. Phys. 49(11), 1825–1836 (2009)

    Article  MathSciNet  Google Scholar 

  15. Afenya, E.K., Bentil, D.E.: Models of acute myeloblastic leukemia and its chemotherapy. In: Computational Medicine. Public Health and Biotechnology, Part I, p. 397. World Scientific, New Jersey (1995)

    Google Scholar 

  16. Zietz, S., Nicolini, C.: Mathematical approaches to optimization of cancer chemotherapy. Bull. Math. Biol. 41, 305–324 (1979)

    MathSciNet  MATH  Google Scholar 

  17. Costa, S.M.I., Boldrini, J.L., Bassanezi, R.C.: Chemotherapeutic treatments involving drug resistance and level of normal cells as criterion of toxicity. Math. Biosci. 125, 211–228 (1995)

    Article  MATH  Google Scholar 

  18. Engelhart, M., Lebiedz, D., Sager, S.: Optimal control for selected cancer chemotherapy ODE models: a view on the potential of optimal schedules and choice of objective function. Math. Biosci. 229, 123–134 (2001)

    Article  MathSciNet  Google Scholar 

  19. Ledzewicz, U., Schaettler, H., Marriot, J., Maurer, H.: Realizable protocols for optimal administration of drugs in mathematical models for anti-angiogenic treatment. Math. Med. Biol. 27, 159–179 (2010)

    Article  Google Scholar 

  20. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962)

    MATH  Google Scholar 

  21. Iourtchenko, D.V.: Solution to a class of stochastic LQ problems with bounded control. Automatica 45, 1439–1442 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Iourtchenko, D.V., Menaldi, J., Bratus, A.S.: On the LQG theory with bounded control. Nonlinear Differ. Equ. Appl. 17(5), 527–534 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bratus, A.S., Chumerina, E.S.: Optimal control synthesis in therapy of solid tumor growth. Comput. Math. Math. Phys. 48(6), 892–911 (2008)

    Article  MathSciNet  Google Scholar 

  24. Chumerina, E.S.: Choice of optimal strategy of tumor chemotherapy in Gompertz model. J. Comput. Syst. Sci. Int. 48(2), 325–331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bratus, A.S., Zaychic, S.Y.: Smooth solution of the Hamilton–Jacobi–Bellman equation in mathematical model of optimal treatment of viral infection. Differ. Equ. 46(11), 1571–1583 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bratus, A.S., Volosov, K.A.: Exact solution to the Hamilton–Jacobi–Bellman equation for optimal correction with an integral constraint on the total resource of control. Dokl. Math. 66(1), 148–151 (2002)

    MATH  Google Scholar 

  27. Bratus, A.S., Fimmel, E., Todorov, Y., Semenov, Y.S., Nuernberg, F.: On strategies on a mathematical model for leukemia therapy. Nonlinear Anal., Real World Appl. 13, 1044–1059 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Todorov, Y., Fimmel, E., Bratus, A.S., Semenov, Y.S., Nuernberg, F.: An optimal strategy for leukemia therapy: a multi-objective approach. Russ. J. Numer. Anal. Math. Model. 26(6), 589–604 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Melikyan, A.A.: Singular characteristics of Hamilton–Jacobi–BellmanI equation in state constraint optimal control problems. In: Preprints of IFAC Symposium: Modeling and Control of Economic System, Klagenfert, Austria, vol. 68, pp. 155–156 (2001)

    Google Scholar 

  30. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions. Springer, Berlin (2006)

    MATH  Google Scholar 

  31. Subbotina, N.N.: The method of characteristics for Hamilton–Jacobi equations and applications to dynamical optimization. J. Math. Sci. 135(3), 2955–3091 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Afenya, E.K.: Acute leukemia and chemotherapy: a modeling viewpoint. Math. Biosci. 138, 79–100 (1996)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The first author contributed to this paper while visiting Heriot-Watt University as a Distinguished Visiting Professor of the Royal Academy of Engineers. This support is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Todorov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bratus, A., Todorov, Y., Yegorov, I. et al. Solution of the Feedback Control Problem in the Mathematical Model of Leukaemia Therapy. J Optim Theory Appl 159, 590–605 (2013). https://doi.org/10.1007/s10957-013-0324-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0324-6

Keywords

Navigation