Skip to main content

Advertisement

Log in

The New York Consortium on Membrane Protein Structure (NYCOMPS): a high-throughput platform for structural genomics of integral membrane proteins

  • Published:
Journal of Structural and Functional Genomics

Abstract

The New York Consortium on Membrane Protein Structure (NYCOMPS) was formed to accelerate the acquisition of structural information on membrane proteins by applying a structural genomics approach. NYCOMPS comprises a bioinformatics group, a centralized facility operating a high-throughput cloning and screening pipeline, a set of associated wet labs that perform high-level protein production and structure determination by x-ray crystallography and NMR, and a set of investigators focused on methods development. In the first three years of operation, the NYCOMPS pipeline has so far produced and screened 7,250 expression constructs for 8,045 target proteins. Approximately 600 of these verified targets were scaled up to levels required for structural studies, so far yielding 24 membrane protein crystals. Here we describe the overall structure of NYCOMPS and provide details on the high-throughput pipeline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  2. Aslanidis C, de Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18:6069–6074

    Article  PubMed  CAS  Google Scholar 

  3. Baas BJ, Denisov IG, Sligar SG (2004) Homotropic cooperativity of monomeric cytochrome P450 3A4 in a nanoscale native bilayer environment. Arch Biochem Biophys 430:218–228

    Article  PubMed  CAS  Google Scholar 

  4. Bernard P, Couturier M (1992) Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes. J Mol Biol 226:735–745

    Article  PubMed  CAS  Google Scholar 

  5. Bowie JU (2001) Stabilizing membrane proteins. Curr Opin Struct Biol 11:397–402

    Article  PubMed  CAS  Google Scholar 

  6. Chang G, Roth CB, Reyes CL, Pornillos O, Chen YJ, Chen AP (2006) Retraction. Science 314:1875

    Article  PubMed  CAS  Google Scholar 

  7. Chill JH, Louis JM, Miller C, Bax A (2006) NMR study of the tetrameric KcsA potassium channel in detergent micelles. Protein Sci 15:684–698

    Article  PubMed  CAS  Google Scholar 

  8. Civjan NR, Bayburt TH, Schuler MA, Sligar SG (2003) Direct solubilization of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers. Biotechniques 35(3):556–563

    PubMed  CAS  Google Scholar 

  9. Daley DO, Rapp M, Granseth E, Melen K, Drew D, von Heijne G (2005) Global topology analysis of the Escherichia coli inner membrane proteome. Science 308:1321–1323

    Article  PubMed  CAS  Google Scholar 

  10. Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1984) X-ray structure analysis of a membrane protein complex. Electron density map at 3 A resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180:385–398

    Article  PubMed  CAS  Google Scholar 

  11. Denisov IG, Grinkova YV, Lazarides AA, Sligar SG (2004) Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J Am Chem Soc 126:3477–3487

    Article  PubMed  CAS  Google Scholar 

  12. Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 347:827–839

    Article  PubMed  CAS  Google Scholar 

  13. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  PubMed  CAS  Google Scholar 

  14. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  PubMed  CAS  Google Scholar 

  15. Fischer G, Kosinska-Eriksson U, Aponte-Santamaría C, Palmgren M, Geijer C, Hedfalk K, Hohmann S, de Groot BL, Neutze R, Lindkvist-Petersson K (2009) Crystal structure of a yeast aquaporin at 1.15 Ångstrom reveals a novel gating mechanism. PLoS Biol 7(6):e1000130

    Article  PubMed  CAS  Google Scholar 

  16. Forrest LR, Tang CL, Honig B (2006) On the accuracy of homology modeling and sequence alignment methods applied to membrane proteins. Biophys J 91:508–517

    Article  PubMed  CAS  Google Scholar 

  17. Garavito RM, Ferguson-Miller S (2001) Detergents as tools in membrane biochemistry. J Biol Chem 276:32403–32406

    Article  PubMed  CAS  Google Scholar 

  18. Garavito RM, Picot D, Loll PJ (1996) Strategies for crystallizing membrane proteins. J Bioenerg Biomembr 28:13–27

    PubMed  CAS  Google Scholar 

  19. Hanson MA, Stevens RC (2009) Discovery of new GPCR biology: one receptor structure at a time. Structure 17:8–14

    Article  PubMed  CAS  Google Scholar 

  20. Henderson R, Unwin PN (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32

    Article  PubMed  CAS  Google Scholar 

  21. Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:660–669

    Article  PubMed  CAS  Google Scholar 

  22. Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423:33–41

    Article  PubMed  CAS  Google Scholar 

  23. Kanelis V, Forman-Kay JD, Kay LE (2001) Multidimensional NMR methods for protein structure determination. IUBMB life 52:291–302

    Article  PubMed  CAS  Google Scholar 

  24. Khademi S, O’Connell J III, Remis J, Robles-Colmenares Y, Miercke LJ, Stroud RM (2004) Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 A. Science 305:1587–1594

    Article  PubMed  CAS  Google Scholar 

  25. Koszelak-Rosenblum M, Krol A, Mozumdar N, Wunsch K, Ferin A, Cook E, Veatch CK, Nagel R, Luft JR, Detitta GT, Malkowski MG (2009) Determination and application of empirically derived detergent phase boundaries to effectively crystallize membrane proteins. Protein Sci 18:1828–1839

    Article  PubMed  CAS  Google Scholar 

  26. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  PubMed  CAS  Google Scholar 

  27. Kwong PD, Wyatt R, Desjardins E, Robinson J, Culp JS, Hellmig BD, Sweet RW, Sodroski J, Hendrickson WA (1999) Probability analysis of variational crystallization and its application to gp120, the exterior envelope glycoprotein of type 1 human immunodeficiency virus (HIV-1). J Biol Chem 274:4115–4123

    Article  PubMed  CAS  Google Scholar 

  28. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  PubMed  CAS  Google Scholar 

  29. Liu J, Hegyi H, Acton TB, Montelione GT, Rost B (2004) Automatic target selection for structural genomics on eukaryotes. Proteins 56:188–200

    Article  PubMed  CAS  Google Scholar 

  30. Lundback AK, van den Berg S, Hebert H, Berglund H, Eshaghi S (2008) Exploring the activity of tobacco etch virus protease in detergent solutions. Anal Biochem 382:69–71

    Article  PubMed  CAS  Google Scholar 

  31. McDermott A (2009) Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Ann Rev Biophys 38:385–403

    Article  CAS  Google Scholar 

  32. Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605

    Article  PubMed  CAS  Google Scholar 

  33. Nallamsetty S, Kapust RB, Tozser J, Cherry S, Tropea JE, Copeland TD, Waugh DS (2004) Efficient site-specific processing of fusion proteins by tobacco vein mottling virus protease in vivo and in vitro. Protein Expr Purif 38:108–115

    Article  PubMed  CAS  Google Scholar 

  34. Ostermeier C, Michel H (1997) Crystallization of membrane proteins. Curr Opin Struct Biol 7:697–701

    Article  PubMed  CAS  Google Scholar 

  35. Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35:D61–D65

    Article  PubMed  CAS  Google Scholar 

  36. Punta M, Love J, Handelman S, Hunt JF, Shapiro L, Hendrickson WA, Rost B (2009) Structural genomics target selection for the New York consortium on membrane protein structure. J Struct Funct Genomics 10:255–268

    Article  PubMed  Google Scholar 

  37. Raunser S, Walz T (2009) Electron crystallography as a technique to study the structure on membrane proteins in a lipidic environment. Ann Rev Biophys 38:89–105

    Article  CAS  Google Scholar 

  38. Salzmann M, Pervushin K, Wider G, Senn H, Wuthrich K (1998) TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc Natl Acad Sci USA 95:13585–13590

    Article  PubMed  CAS  Google Scholar 

  39. Savage DF, Egea PF, Robles-Colmenares Y, O’Connell JD 3rd, Stroud RM (2003) Architecture and selectivity in aquaporins: 2.5 a X-ray structure of aquaporin Z. PLoS biology 1:E72

    Article  PubMed  Google Scholar 

  40. Shaw AW, McLean MA, Sligar SG (2004) Phospholipid phase transitions in homogeneous nanometer scale bilayer discs. FEBS Lett 556:260–264

    Article  PubMed  CAS  Google Scholar 

  41. Suzuki M, Mao L, Inouye M (2007) Single protein production (SPP) system in Escherichia coli. Nat Protoc 2:1802–1810

    Article  PubMed  CAS  Google Scholar 

  42. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 272:1136–1144

    Article  PubMed  CAS  Google Scholar 

  43. Wallin E, von Heijne G (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038

    Article  PubMed  CAS  Google Scholar 

  44. Zhang Q, Atreya HS, Kamen DE, Girvin ME, Szyperski T (2008) GFT projection NMR based resonance assignment of membrane proteins: application to subunit C of E. coli F(1)F (0) ATP synthase in LPPG micelles. J Biomol NMR 40:157–163

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank past and present colleagues who have participated in the development of the Protein Production Facility: Brandon Hillerich, Brian Kloss, Renato Bruni, Arianne Morrison, Patricia Rodriguez, Amanda Meyer, Jeff Bonanno, Zsolt Zolnai, Michael Weiner, Reinhard Grisshammer, and Gunnar von Heijne. This work was supported in part by a Cooperative Agreement from the NIGMS Protein Structure Initiative, U54GM075026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne A. Hendrickson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Love, J., Mancia, F., Shapiro, L. et al. The New York Consortium on Membrane Protein Structure (NYCOMPS): a high-throughput platform for structural genomics of integral membrane proteins. J Struct Funct Genomics 11, 191–199 (2010). https://doi.org/10.1007/s10969-010-9094-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-010-9094-7

Keywords

Navigation