Skip to main content

Advertisement

Log in

Estimating landscape resistance to movement: a review

  • Landscape Ecology in Review
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Resistance surfaces are often used to fill gaps in our knowledge surrounding animal movement and are frequently the basis for modeling connectivity associated with conservation initiatives. However, the methods for quantifying resistance surfaces are varied and there is no general consensus on the appropriate choice of environmental data or analytical approaches. We provide a comprehensive review of the literature on this topic to highlight methods used and identify knowledge gaps. Our review includes 96 papers that parameterized resistance surfaces (sometimes using multiple approaches) for a variety of taxa. Data types used included expert opinion (n = 76), detection (n = 23), relocation (n = 8), pathway (n = 2), and genetic (n = 28). We organized the papers into three main analytical approaches; one-stage expert opinion, one-stage empirical, and two-stage empirical, each of which was represented by 43, 22, and 36 papers, respectively. We further organized the empirical approaches into five main resource selection functions; point (n = 16), matrix (n = 38), home range (n = 3), step (n = 1), and pathway (n = 1). We found a general lack of justification for choice of environmental variables and their thematic and spatial representation, a heavy reliance on expert opinion and detection data, and a tendency to confound movement behavior and resource use. Future research needs include comparative analyses on the choice of environmental variables and their spatial and thematic scales, and on the various biological data types used to estimate resistance. Comparative analyses amongst analytical processes is also needed, as well as transparency in reporting on uncertainty in parameter estimates and sensitivity of final resistance surfaces, especially if the resistance surfaces are to be used for conservation and planning purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of ‘least-cost’ modeling as a functional landscape model. Landsc Urban Plan 64:233–247

    Article  Google Scholar 

  • Bartelt PE, Klaver RW, Porter WP (2010) Modeling amphibian energetics, habitat suitability, and movements of western toads, Anaxyrus (Bufo) boreas, across present and future landscapes. Ecol Model 221:2675–2686

    Article  Google Scholar 

  • Beazley K, Smandych L, Snaith T, MacKinnon F, Austen-Smith P Jr, Dunker P (2005) Biodiversity considerations in conservation system planning: map-based approach for Nova Scotia, Canada. Ecol Appl 15:2192–2208

    Article  Google Scholar 

  • Beier P, Majka DR, Spencer WD (2008) Forks in the road: choices in procedures for designing wildland linkages. Conserv Biol 22:836–851

    Article  PubMed  Google Scholar 

  • Beier P, Majka DR, Newell SL (2009) Uncertainty analysis of least-cost modeling for designing wildlife linkages. Ecol Appl 19:2067–2077

    Article  PubMed  Google Scholar 

  • Braunisch V, Segelbacher G, Hirzel AH (2010) Modelling functional landscape connectivity from genetic population structure: a new spatially explicit approach. Mol Ecol 19:3664–3678

    Article  PubMed  Google Scholar 

  • Broquet T, Ray N, Petit E, Fryxell JM, Burel F (2009) Genetic isolation by distance and landscape connectivity in the American marten (Martes americana). Landscape Ecol 21:877–889

    Article  Google Scholar 

  • Burnham KP, Anderson D (2002) Model selection and multi-model inference (2nd edn). Springer, New York

  • Chardon JP, Adriaensen F, Matthysen E (2003) Incorporating landscape elements into a connectivity measure: a case study for the Speckled wood butterfly (Pararge aegeria L.). Landscape Ecol 18:561–573

    Article  Google Scholar 

  • Chetkiewicz C-LB, Boyce MS (2009) Use of resource selection functions to identify conservation corridors. J Appl Ecol 46:1036–1047

    Article  Google Scholar 

  • Clark RW, Brown WS, Stechert R, Zamudio KR (2008) Integrating individual behavior and landscape genetics: the population structure of timber rattlesnake hibernacula. Mol Ecol 17:719–730

    PubMed  Google Scholar 

  • Clevenger AP, Wierzchowski J, Chruszcz B, Gunson K (2002) GIS-generated, expert-based models for identifying wildlife habitat linkages and planning mitigation passages. Conserv Biol 16:503–514

    Article  Google Scholar 

  • Compton BW, McGarigal K, Cushman SA, Gamble LR (2007) A resistant-kernel model of connectivity for amphibians that breed in vernal pools. Conserv Biol 21:788–799

    Article  PubMed  Google Scholar 

  • Coulon A, Cosson JF, Angibault JM, Cargnelutti B, Galan M, Morellet N, Petit E, Aulagnier S, Hewison AJM (2004) Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach. Mol Ecol 13:2841–2850

    Article  PubMed  CAS  Google Scholar 

  • Cushman SA (2010) Animal movement data: GPS telemetry, autocorrelation and the need for path-level analysis. In: Cushman SA, Huettmann F (eds) Spatial complexity, informatics, and wildlife conservation. Springer, New York, pp 131–149

    Chapter  Google Scholar 

  • Cushman SA, Landguth EL (2010) Spurious correlations and inference in landscape genetics. Mol Ecol 19:3592–3602

    Article  PubMed  Google Scholar 

  • Cushman SA, Lewis JS (2010) Movement behavior explains genetic differentiation in American black bears. Landscape Ecol 25:1613–1625

    Article  Google Scholar 

  • Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene-flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat 168:486–499

    Article  PubMed  Google Scholar 

  • Cushman SA, Gutzweiler K, Evans JS, McGarigal K (2010) The gradient paradigm: a conceptual and analytical framework for landscape ecology. In: Cushman SA, Huettmann F (eds) Spatial complexity, informatics, and wildlife conservation. Springer, New York, pp 83–108

    Chapter  Google Scholar 

  • Cushman S, McRae B, Adriaensen F, Beier P, Shirley M, Zeller KA (in press) Biological corridors. In: MacDonald D, Willis K (eds) Key topics in conservation biology, vol II. Wiley

  • Desrochers A, Bélisle M, Morand-Ferron J (2011) Integrating GIS and homing experiments to study avian movement costs. Landscape Ecol 26:47–58

    Article  Google Scholar 

  • Emaresi G, Pellet J, Dubey S, Hirzel AH, Fumagalli L (2011) Landscape genetics of the Alpine newt (Mesotriton alpestris) inferred from a strip-based approach. Conserv Genet 12:41–50

    Article  Google Scholar 

  • Epps CW, Wehausen JD, Bleich VC, Torres SG, Brashares JS (2007) Optimizing dispersal and corridor models using landscape genetics. J Appl Ecol 44:714–724

    Article  Google Scholar 

  • Epps CW, Mutayoba BM, Gwin L, Brashares JS (2011) An empirical evaluation of the African elephant as a focal species for connectivity planning in East Africa. Divers Distrib 17:603–612

    Article  Google Scholar 

  • Estrada-Peña A (2003) The relationships between habitat topology, critical scales of connectivity and tick abundance Ixodes ricinus in a heterogeneous landscape in northern Spain. Ecography 26:661–671

    Article  Google Scholar 

  • Ferreras P (2001) Landscape structure and asymmetrical inter-patch connectivity in a metapopulation of the endangered Iberian lynx. Biol Conserv 100:125–136

    Article  Google Scholar 

  • Flamm RO, Weigle BL, Wright IE, Ross M, Aglietti S (2005) Estimation of manatee (Trichechus manatus latirostris) places and movement corridors using telemetry data. Ecol Appl 15:1415–1426

    Article  Google Scholar 

  • Foltête JC, Berthier K, Cosson JF (2008) Cost distance defined by a topological function of landscape. Ecol Model 210:104–114

    Article  Google Scholar 

  • Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80:185–201

    Article  Google Scholar 

  • Freeman RC, Bell KP (2011) Conservation versus cluster subdivisions and implications for habitat connectivity. Landsc Urban Plan 101:30–42

    Article  Google Scholar 

  • Graham CH (2001) Factors influencing movement patterns of keel-billed toucans in a fragmented tropical landscape in southern Mexico. Conserv Biol 15:1789–1798

    Article  Google Scholar 

  • ISI Web of Knowledge Thomson Reuters (2011) Web of Science. Retrieved June 16, 2011 from http://pcs.isiknowledge.com

  • Janin A, Léna JP, Ray N, Delacourt C, Allemand P, Joly P (2009) Assessing landscape connectivity with calibrated cost-distance modelling: predicting common toad distribution in a context of spreading agriculture. J Appl Ecol 46:833–841

    Article  Google Scholar 

  • Jaquiéry J, Broquet T, Hirzel AH, Yearsley J, Perrin N (2011) Inferring landscape effects on dispersal from genetic distances: how far can we go? Mol Ecol 20:692–705

    Google Scholar 

  • Johnson CJ, Gillingham MP (2004) Mapping uncertainty: sensitivity of wildlife habitat ratings to expert opinion. J Appl Ecol 41:1032–1041

    Article  Google Scholar 

  • Kautz R, Kawula R, Hoctor T, Comiskey J, Jansen D, Jennings D, Kasbohm J, Mazzzotti F, McBride R, Richardson L, Root K (2006) How much is enough? Landscape-scale conservation for the Florida panther. Biol Conserv 130:118–133

    Article  Google Scholar 

  • Kindall JL, VanManen FT (2007) Identifying habitat linkages for American black bears in North Carolina, USA. J Wildl Manag 71:487–495

    Article  Google Scholar 

  • Klug PE, Wisely SM, With KA (2011) Population genetic structure and landscape connectivity of the Eastern Yellowbelly Racer (Coluber constrictor flaviventris) in the contiguous tallgrass prairie of northeastern Kansas, USA. Landscape Ecol 26:281–294

    Article  Google Scholar 

  • Koen EL, Garroway CJ, Wilson PJ, Bowman J (2010) The effect of map boundary on estimates of landscape resistance to animal movement. PLoS ONE 5:1–8

    Article  Google Scholar 

  • Koscinsky D, Yates AG, Handford P, Lougheed SC (2009) Effects of landscape and history on diversification of a montane, stream-breeding amphibian. J Biogeogr 36:255–265

    Article  Google Scholar 

  • Kuemmerle T, Perzanowski K, Resit Akcakaya H, Beaudry F, Van Deelen TR, Parnikoza I, Khoyetskyy P, Waller DM, Radeloff VC (2011) Cost-effectiveness of strategies to establish a European bison metapopulation in the Carpathians. J Appl Ecol 48:317–329

    Article  Google Scholar 

  • Kuroe M, Yamaguchi N, Kadoya T, Miyashita T (2011) Matrix heterogeneity affects population size of the harvest mice: Bayesian estimation of matrix resistance and model validation. Oikos 120:271–279

    Article  Google Scholar 

  • Laiolo P, Tella JL (2006) Landscape bioacoustics allow detection of the effects of habitat patchiness on population structure. Ecology 87:1203–1214

    Article  PubMed  Google Scholar 

  • Landguth EL, Cushman SA, Schwartz MK, McKelvey KS, Murphy M, Luikart G (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191

    Article  Google Scholar 

  • LaRue MA, Nielsen CK (2008) Modelling potential dispersal corridors for cougars in Midwestern North America using least-cost path methods. Ecol Model 212:372–381

    Article  Google Scholar 

  • Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu Z, Yang L, Merchant JW (2000) Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int J Remote Sens 21:1303–1330

    Article  Google Scholar 

  • Magle SB, Theobald DM, Crooks KR (2009) A comparison of metrics predicting landscape connectivity for a highly interactive species along an urban gradient in Colorado, USA. Landscape Ecol 24:267–280

    Article  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Manly BFJ, McDonald LL, Thomas DL, McDonald TL, Erickson WP (2010) Resource selection by animals: statistical design and analysis for field studies, 2nd edn. Kluwer, Amsterdam

    Google Scholar 

  • McGarigal K, Cushman SA (2005) The gradient concept of landscape structure. In: Wiens J, Moss M (eds) Issues and perspectives in landscape ecology. Cambridge University Press, Cambridge, pp 112–119

    Chapter  Google Scholar 

  • McRae BH (2006) Isolation by resistance. Evolution 60:1551–1561

    PubMed  Google Scholar 

  • McRae BH, Beier P (2007) Circuit theory predicts gene flow in plant and animal populations. Proc Nat Acad Sci 104:19885–19890

    Article  PubMed  CAS  Google Scholar 

  • Michels E, Cottenie K, Neys L, DeGelas K, Coppin P, DeMeester L (2001) Geographical and genetic distances among zooplankton populations in a set of interconnected ponds: a plea for using GIS modelling of the effective geographical distance. Mol Ecol 10:1929–1938

    Article  PubMed  CAS  Google Scholar 

  • Murphy MA, Dezzani R, Pilliod DS, Storfer A (2010) Landscape genetics of high mountain frog metapopulations. Mol Ecol 19:3634–3649

    Article  PubMed  Google Scholar 

  • Newby JR (2011) Puma dispersal ecology in the central Rocky Mountains. Master’s thesis, University of Montana, Missoula, MT, pp 1–111

  • Nichol JE, Wong MS, Corlett R, Nichol DW (2010) Assessing avian habitat fragmentation in urban areas of Hong Kong (Kowloon) at high spatial resolution using spectral unmixing. Landsc Urban Plan 95:54–60

    Article  Google Scholar 

  • O’Brien D, Manseau M, Fall A, Fortin MJ (2006) Testing the importance of spatial configuration of winter habitat for woodland caribou: an application of graph theory. Biol Conserv 130:70–83

    Article  Google Scholar 

  • Pearce JL, Cherry K, Drielsma M, Ferrier S, Whish G (2001) Incorporating expert opinion and fine-scale vegetation mapping into statistical models of faunal distribution. J Appl Ecol 38:412–424

    Article  Google Scholar 

  • Pinto N, Keitt TH (2009) Beyond the least-cost path: evaluating corridor redundancy using a graph-theoretic approach. Landscape Ecol 24:253–266

    Article  Google Scholar 

  • Pullinger MG, Johnson CJ (2010) Maintaining or restoring connectivity of modified landscapes: evaluating the least-cost path model with multiple sources of ecological information. Landscape Ecol 25:1547–1560

    Article  Google Scholar 

  • Rabinowitz A, Zeller KA (2010) A range-wide model of landscape connectivity and conservation for the jaguar, Panthera onca. Biol Conserv 143:939–945

    Article  Google Scholar 

  • Rae C, Rothley K, Dragicevic S (2007) Implications of error and uncertainty for an environmental planning scenario: a sensitivity analysis of GIS-based variables in reserve design. Landsc Urban Plan 79:210–217

    Article  Google Scholar 

  • Rayfield B, Fortin MJ, Fall A (2010) The sensitivity of least-cost habitat graphs to relative cost surface values. Landscape Ecol 25:519–532

    Article  Google Scholar 

  • Richard Y, Armstrong DP (2010) Cost distance modelling of landscape connectivity and gap-crossing ability using radio-tracking data. J Appl Ecol 47:603–610

    Article  Google Scholar 

  • Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158:87–99

    Article  PubMed  CAS  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York

    Google Scholar 

  • Savage WK, Fremier AK, Shaffer HB (2010) Landscape genetics of alpine Sierra Nevada salamanders reveal extreme population subdivision in space and time. Mol Ecol 19:3301–3314

    Article  PubMed  Google Scholar 

  • Sawyer SC, Epps CW, Brashares JS (2011) Placing linkages among fragmented habitats: do least-cost models reflect how animals use landscapes? J Appl Ecol 48:668–678

    Article  Google Scholar 

  • Schwartz MK, Copeland JP, Anderson NJ, Squires JR, Inman RM, McKelvey KS, Pilgrim KL, Waits LP, Cushman SA (2009) Wolverine gene flow across a narrow climatic niche. Ecology 90:3222–3232

    Google Scholar 

  • Seoane J, Bustamente J, Diaz-Delgado R (2005) Effect of expert opinion on the predictive ability of environmental models of bird distribution. Conserv Biol 19:512–522

    Article  Google Scholar 

  • Shirk AJ, Wallin DO, Cushman SA, Rica CG, Warheit KI (2010) Inferring landscape effects on gene flow: a new model selection framework. Mol Ecol 19:3603–3619

    Article  PubMed  CAS  Google Scholar 

  • Short Bull RA, Cushman SA, Mace R, Chilton T, Kendall KC, Landguth EL, Schwartz MK, McKelvey K, Allendorf FW, Luikart G (2011) Why replication is so important in landscape genetics: American black bear in the Rocky Mountains. Mol Ecol 20:1092–1107

    Article  Google Scholar 

  • Singleton PH, Gaines WL, Lehmkuhl JF (2002) Landscape permeability for large carnivores in Washington: a geographic information system weighted-distance and least-cost corridor assessment. Research Paper PNW-RP-549. U.S. Forest Service Pacific Northwest Research Station, Portland, OR

  • Spear SF, Balkenhol N, Fortin MJ, McRae BH, Scribner K (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol 19:3576–3591

    Article  PubMed  Google Scholar 

  • Stevens VM, Verkenne C, Vandewoestijne S, Wesselingh RA, Baguette M (2006) Gene flow and functional connectivity in the natterjack toad. Mol Ecol 15:2333–2344

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe OL, Bakkestuen V, Fry G, Stabbetorp OE (2003) Modelling the benefits of farmland restoration: methodology and application to butterfly movement. Landsc Urban Plan 63:15–31

    Article  Google Scholar 

  • Thatcher CA, VanManen FT, Clark JD (2009) A habitat assessment for Florida panther population expansion into central Florida. J Mammal 90:918–925

    Article  Google Scholar 

  • Thompson CM, McGarigal K (2002) The influence of research scale on bald eagle habitat selection along the lower Hudson River, New York. Landscape Ecol 17:569–586

    Article  Google Scholar 

  • Vignieri SN (2005) Streams over mountains: influence of riparian connectivity on gene flow in the Pacific jumping mouse (Zapus trinotatus). Mol Ecol 14:1925–1937

    Article  PubMed  CAS  Google Scholar 

  • Wang YH, Yang KC, Bridgman CL, Lin LK (2008) Habitat suitability modelling to correlate gene flow with landscape connectivity. Landscape Ecol 23:989–1000

    Google Scholar 

  • Wang IJ, Savage WK, Shaffer B (2009) Landscape genetics and least-cost path analysis reveal unexpected dispersal routes in the California tiger salamander (Ambystoma californiense). Mol Ecol 18:1365–1374

    Article  PubMed  Google Scholar 

  • Wasserman TN, Cushman SA, Schwartz MK, Wallin DO (2010) Spatial scaling and multi-model inference in landscape genetics: Martes Americana in northern Idaho. Landscape Ecol 25:1601–1612

    Article  Google Scholar 

  • Watts K, Eycott AE, Handley P, Ray D, Humphrey JW, Quine CP (2010) Targeting and evaluating biodiversity conservation action within fragmented landscapes: an approach based on generic focal species and least-cost networks. Landscape Ecol 25:1305–1318

    Article  Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397

    Article  Google Scholar 

  • Worton BJ (1995) A convex hull-based estimator of home-range size. Biometrics 51:1206–1215

    Article  Google Scholar 

  • Zimmermann F, Breitenmoser U (2007) Potential distribution and population size of the Eurasian lynx Lynx lynx in the Jura Mountains and possible corridors to adjacent ranges. Wildl Biol 13:406–416

    Article  Google Scholar 

Download references

Acknowledgments

We thank Brad Timm, Sandy Haire, Sam Cushman, Paul Beier and Erin Landguth for comments on a draft of this manuscript. This material is based on work partially supported by a Kaplan Graduate Award and a UMASS Graduate School Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine A. Zeller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 98 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeller, K.A., McGarigal, K. & Whiteley, A.R. Estimating landscape resistance to movement: a review. Landscape Ecol 27, 777–797 (2012). https://doi.org/10.1007/s10980-012-9737-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-012-9737-0

Keywords

Navigation