Skip to main content

Advertisement

Log in

Rv3080c regulates the rate of inhibition of mycobacteria by isoniazid through FabD

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The mycobacterial FASII multi-enzyme complex has been identified to be a target of Ser/Thr protein kinases (STPKs) of Mycobacterium tuberculosis (MTB), with substrates, including the malonyl-CoA:ACP transacylase (FabD) and the β-ketoacyl-ACP synthases KasA and KasB. These proteins are phosphorylated by various kinases in vitro. The present study links the correlation of FASII pathway with serine threonine protein kinase of MTB. In the preliminary finding, we have shown that mycobacterial protein Rv3080c (PknK) phosphorylates FabD and the knockdown of PknK protein in mycobacteria down regulates FabD expression. This event leads to the differential inhibition of mycobacteria in the presence of isoniazid (INH), as the inhibition of growth of mycobacteria in the presence of INH is enhanced in PknK deficient mycobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bach H, Wong D, Av-Gay Y (2009) Mycobacterium tuberculosis PtkA is a novel protein tyrosine kinase whose substrate is PtpA. Biochem J 420:155–160

    Article  PubMed  CAS  Google Scholar 

  2. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  PubMed  CAS  Google Scholar 

  3. Kang CM, Abbott DW, Park ST, Dascher CC, Cantley LC, Husson RN (2005) The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes Dev 19:1692–1704

    Article  PubMed  CAS  Google Scholar 

  4. Papavinasasundaram KG, Chan B, Chung JH, Colston MJ, Davis EO, Av-Gay Y (2005) Deletion of the Mycobacterium tuberculosis pknH gene confers a higher bacillary load during the chronic phase of infection in BALB/c mice. J Bacteriol 187:5751–5760

    Article  PubMed  CAS  Google Scholar 

  5. Walburger A, Koul A, Ferrari G, Nguyen L, Prescianotto-Baschong C, Huygen K, Klebl B, Thompson C, Bacher G, Pieters J (2004) Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science 304:1800–1804

    Article  PubMed  CAS  Google Scholar 

  6. Deol P, Vohra R, Saini AK, Singh A, Chandra H, Chopra P, Das TK, Tyagi AK, Singh Y (2005) Role of Mycobacterium tuberculosis Ser/Thr kinase PknF: implications in glucose transport and cell division. J Bacteriol 187:3415–3420

    Article  PubMed  CAS  Google Scholar 

  7. Gopalaswamy R, Narayanan S, Chen B, Jacobs WR, Av-Gay Y (2009) The serine/threonine protein kinase PknI controls the growth of Mycobacterium tuberculosis upon infection. FEMS Microbiol Lett 295:23–29

    Article  PubMed  CAS  Google Scholar 

  8. Arora G, Sajid A, Gupta M, Bhaduri A, Kumar P, Basu-Modak S, Singh Y (2010) Understanding the role of PknJ in Mycobacterium tuberculosis: biochemical characterization and identification of novel substrate pyruvate kinase A. PLoS One 5:e10772

    Article  PubMed  Google Scholar 

  9. Dubnau E, Chan J, Raynaud C, Mohan VP, Laneelle MA, Yu K, Quemard A, Smith I, Daffe M (2000) Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol Microbiol 36:630–637

    Article  PubMed  CAS  Google Scholar 

  10. Glickman MS, Cox JS, Jacobs WR Jr (2000) A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell 5:717–727

    Article  PubMed  CAS  Google Scholar 

  11. Glickman MS, Cahill SM, Jacobs WR Jr (2001) The Mycobacterium tuberculosis cmaA2 gene encodes a mycolic acid trans-cyclopropane synthetase. J Biol Chem 276:2228–2233

    Article  PubMed  CAS  Google Scholar 

  12. Bhatt A, Fujiwara N, Bhatt K, Gurcha SS, Kremer L, Chen B, Chan J, Porcelli SA, Kobayashi K, Besra GS, Jacobs WR Jr (2007) Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice. Proc Natl Acad Sci USA 104:5157–5162

    Article  PubMed  CAS  Google Scholar 

  13. Ojha A, Anand M, Bhatt A, Kremer L, Jacobs WR Jr, Hatfull GF (2005) GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123:861–873

    Article  PubMed  CAS  Google Scholar 

  14. Chaurasiya SK, Srivastava KK (2009) Downregulation of protein kinase C-alpha enhances intracellular survival of Mycobacteria: role of PknG. BMC Microbiol 9:271

    Article  PubMed  Google Scholar 

  15. Daffe M, Draper P (1998) The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol 39:131–203

    Article  PubMed  CAS  Google Scholar 

  16. Yuan Y, Zhu Y, Crane DD, Barry CE III (1998) The effect of oxygenated mycolic acid composition on cell wall function and macrophage growth in Mycobacterium tuberculosis. Mol Microbiol 29:1449–1458

    Article  PubMed  CAS  Google Scholar 

  17. Khan S, Nagarajan SN, Parikh A, Samantaray S, Singh A, Kumar D, Roy RP, Bhatt A, Nandicoori VK (2010) Phosphorylation of enoyl-acyl carrier protein reductase InhA impacts mycobacterial growth and survival. J Biol Chem 285:37860–37871

    Article  PubMed  CAS  Google Scholar 

  18. Takayama K, Wang L, David HL (1972) Effect of isoniazid on the in vivo mycolic acid synthesis, cell growth, and viability of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2:29–35

    Article  PubMed  CAS  Google Scholar 

  19. Asselineau J, Lederer E (1950) Structure of the mycolic acids of Mycobacteria. Nature 166:782–783

    Article  PubMed  CAS  Google Scholar 

  20. Mdluli K, Slayden RA, Zhu Y, Ramaswamy S, Pan X, Mead D, Crane DD, Musser JM, Barry CE 3rd (1998) Inhibition of a Mycobacterium tuberculosis beta-ketoacyl ACP synthase by isoniazid. Science 280:1607–1610

    Article  PubMed  CAS  Google Scholar 

  21. Ramaswamy S, Musser JM (1998) Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber Lung Dis 79:3–29

    Article  PubMed  CAS  Google Scholar 

  22. Kumari R, Singh SK, Singh DK, Singh PK, Chaurasiya SK, Srivastava KK (2012) Functional characterization delineates that a Mycobacterium tuberculosis specific protein kinase (Rv3080c) is responsible for the growth, phagocytosis and intracellular survival of avirulent mycobacteria. Mol Cell Biochem 369:67–74

    Article  PubMed  CAS  Google Scholar 

  23. Malhotra V, Arteaga-Cortes LT, Clay G, Clark-Curtiss JE (2010) Mycobacterium tuberculosis protein kinase K confers survival advantage during early infection in mice and regulates growth in culture and during persistent infection: implications for immune modulation. Microbiology 156:2829–2841

    Article  PubMed  CAS  Google Scholar 

  24. Molle V, Brown AK, Besra GS, Cozzone AJ, Kremer L (2006) The condensing activities of the Mycobacterium tuberculosis type II fatty acid synthase are differentially regulated by phosphorylation. J Biol Chem 281:30094–30103

    Article  PubMed  CAS  Google Scholar 

  25. Singh A, Jain S, Gupta S, Das T, Tyagi AK (2003) mymA operon of Mycobacterium tuberculosis: its regulation and importance in the cell envelope. FEMS Microbiol Lett 227:53–63

    Article  PubMed  CAS  Google Scholar 

  26. Kumar P, Kumar D, Parikh A, Rananaware D, Gupta M, Singh Y, Nandicoori VK (2009) The Mycobacterium tuberculosis protein kinase K modulates activation of transcription from the promoter of mycobacterial monooxygenase operon through phosphorylation of the transcriptional regulator VirS. J Biol Chem 284:11090–11099

    Article  PubMed  CAS  Google Scholar 

  27. Schultz C, Niebisch A, Schwaiger A, Viets U, Metzger S, Bramkamp M, Bott M (2009) Genetic and biochemical analysis of the serine/threonine protein kinases PknA, PknB, PknG and PknL of Corynebacterium glutamicum: evidence for non-essentiality and for phosphorylation of OdhI and FtsZ by multiple kinases. Mol Microbiol 74:724–741

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in parts by network project grant SPLENDID from Council of Scientific and Industrial Research, New Delhi. We thank Director, CDRI for his encouragement and support. RK is recipient of ICMR Fellowship. This is CDRI communication # 8347.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishore K. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumari, R., Saxena, R., Tiwari, S. et al. Rv3080c regulates the rate of inhibition of mycobacteria by isoniazid through FabD. Mol Cell Biochem 374, 149–155 (2013). https://doi.org/10.1007/s11010-012-1514-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1514-5

Keywords

Navigation