Skip to main content

Advertisement

Log in

Remote ischemic preconditioning for myocardial protection: update on mechanisms and clinical relevance

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Ischemic heart disease is the leading cause of death for both men and women worldwide, accruing 7.4 million deaths in 2012. There has been a continued search for better cardioprotective modalities that would reduce myocardial ischemia–reperfusion injury. Among these attempts, a more convenient model of ischemic preconditioning, known as remote ischemic preconditioning (RIPC) was first introduced in 1993 by Przyklenk and colleagues who reported that brief regional occlusion–reperfusion episodes in one vascular bed of the heart render protection to remote myocardial tissue. Subsequently, major advances in myocardial RIPC came with the use of skeletal muscle as the ischemic stimulus. To date, numerous studies have revealed that RIPC applied to the kidney, liver, mesentery, and skeletal muscle, have all exhibited cardioprotective effects. The main purpose of this review article is to summarize the new advances in understanding the molecular mechanisms of RIPC during the past 5 years, including those related to capsaicin-activated C sensory fibers, hypoxia-inducible factor 1α, connexin 43, extracellular vesicles, microRNA-144, microRNA-1, and nitrite. In addition, we have discussed results from several recent human clinical trials with RIPC. Taken together, the emerging clinical evidence supports the concept that the effectiveness of RIPC paired with its low-cost and non-invasive features makes it an ideal treatment before reperfusion after sustained ischemia. More carefully designed studies are warranted to fully exploit the clinical benefits of RIPC and its potential implications in patients with cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    Article  CAS  PubMed  Google Scholar 

  2. Hagar JM, Hale SL, Kloner RA (1991) Effect of preconditioning ischemia on reperfusion arrhythmias after coronary artery occlusion and reperfusion in the rat. Circ Res 68:61–68

    Article  CAS  PubMed  Google Scholar 

  3. Lott FD, Guo P, Toombs CF (1996) Reduction in infarct size by ischemic preconditioning persists in a chronic rat model of myocardial ischemia-reperfusion injury. Pharmacology 52:113–118

    Article  CAS  PubMed  Google Scholar 

  4. Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P (1993) Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 87:893–899

    Article  CAS  PubMed  Google Scholar 

  5. Kharbanda RK, Mortensen UM, White PA, Kristiansen SB, Schmidt MR, Hoschtitzky JA, Vogel M, Sorensen K, Redington AN, MacAllister R (2002) Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation 106:2881–2883

    Article  CAS  PubMed  Google Scholar 

  6. Ovize M, Thibault H, Przyklenk K (2013) Myocardial conditioning: opportunities for clinical translation. Circ Res 113:439–450

    Article  CAS  PubMed  Google Scholar 

  7. Hausenloy DJ, Yellon DM (2008) Remote ischaemic preconditioning: underlying mechanisms and clinical application. Cardiovasc Res 79:377–386

    Article  CAS  PubMed  Google Scholar 

  8. Costa JF, Fontes-Carvalho R, Leite-Moreira AF (2013) Myocardial remote ischemic preconditioning: from pathophysiology to clinical application. Rev Port Cardiol 32:893–904

    PubMed  Google Scholar 

  9. Dickson EW, Reinhardt CP, Renzi FP, Becker RC, Porcaro WA, Heard SO (1999) Ischemic preconditioning may be transferable via whole blood transfusion: preliminary evidence. J Thromb Thrombolysis 8:123–129

    Article  CAS  PubMed  Google Scholar 

  10. Shimizu M, Tropak M, Diaz RJ, Suto F, Surendra H, Kuzmin E, Li J, Gross G, Wilson GJ, Callahan J, Redington AN (2009) Transient limb ischaemia remotely preconditions through a humoral mechanism acting directly on the myocardium: evidence suggesting cross-species protection. Clin Sci (Lond) 117:191–200

    Article  CAS  Google Scholar 

  11. Pell TJ, Baxter GF, Yellon DM, Drew GM (1998) Renal ischemia preconditions myocardium: role of adenosine receptors and ATP-sensitive potassium channels. Am J Physiol 275:H1542–H1547

    CAS  PubMed  Google Scholar 

  12. Schoemaker RG, van Heijningen CL (2000) Bradykinin mediates cardiac preconditioning at a distance. Am J Physiol Heart Circ Physiol 278:H1571–H1576

    CAS  PubMed  Google Scholar 

  13. Patel HH, Moore J, Hsu AK, Gross GJ (2002) Cardioprotection at a distance: mesenteric artery occlusion protects the myocardium via an opioid sensitive mechanism. J Mol Cell Cardiol 34:1317–1323

    Article  CAS  PubMed  Google Scholar 

  14. Tang ZL, Dai W, Li YJ, Deng HW (1999) Involvement of capsaicin-sensitive sensory nerves in early and delayed cardioprotection induced by a brief ischaemia of the small intestine. Naunyn Schmiedebergs Arch Pharmacol 359:243–247

    Article  CAS  PubMed  Google Scholar 

  15. Hajrasouliha AR, Tavakoli S, Ghasemi M, Jabehdar-Maralani P, Sadeghipour H, Ebrahimi F, Dehpour AR (2008) Endogenous cannabinoids contribute to remote ischemic preconditioning via cannabinoid CB2 receptors in the rat heart. Eur J Pharmacol 579:246–252

    Article  CAS  PubMed  Google Scholar 

  16. Gho BC, Schoemaker RG, van den Doel MA, Duncker DJ, Verdouw PD (1996) Myocardial protection by brief ischemia in noncardiac tissue. Circulation 94:2193–2200

    Article  CAS  PubMed  Google Scholar 

  17. Ding YF, Zhang MM, He RR (2001) Role of renal nerve in cardioprotection provided by renal ischemic preconditioning in anesthetized rabbits. Sheng Li Xue Bao 53:7–12

    CAS  PubMed  Google Scholar 

  18. Liem DA, Verdouw PD, Ploeg H, Kazim S, Duncker DJ (2002) Sites of action of adenosine in interorgan preconditioning of the heart. Am J Physiol Heart Circ Physiol 283:H29–H37

    CAS  PubMed  Google Scholar 

  19. Dong JH, Liu YX, Ji ES, He RR (2004) Limb ischemic preconditioning reduces infarct size following myocardial ischemia-reperfusion in rats. Sheng Li Xue Bao 56:41–46

    PubMed  Google Scholar 

  20. Wolfrum S, Schneider K, Heidbreder M, Nienstedt J, Dominiak P, Dendorfer A (2002) Remote preconditioning protects the heart by activating myocardial PKCepsilon-isoform. Cardiovasc Res 55:583–589

    Article  CAS  PubMed  Google Scholar 

  21. Wolfrum S, Nienstedt J, Heidbreder M, Schneider K, Dominiak P, Dendorfer A (2005) Calcitonin gene related peptide mediates cardioprotection by remote preconditioning. Regul Pept 127:217–224

    Article  CAS  PubMed  Google Scholar 

  22. Li YJ, Xiao ZS, Peng CF, Deng HW (1996) Calcitonin gene-related peptide-induced preconditioning protects against ischemia-reperfusion injury in isolated rat hearts. Eur J Pharmacol 311:163–167

    Article  CAS  PubMed  Google Scholar 

  23. Xiao L, Lu R, Hu CP, Deng HW, Li YJ (2001) Delayed cardioprotection by intestinal preconditioning is mediated by calcitonin gene-related peptide. Eur J Pharmacol 427:131–135

    Article  CAS  PubMed  Google Scholar 

  24. Jones WK, Fan GC, Liao S, Zhang JM, Wang Y, Weintraub NL, Kranias EG, Schultz JE, Lorenz J, Ren X (2009) Peripheral nociception associated with surgical incision elicits remote nonischemic cardioprotection via neurogenic activation of protein kinase C signaling. Circulation 120:S1–S9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Konstantinov IE, Arab S, Kharbanda RK, Li J, Cheung MM, Cherepanov V, Downey GP, Liu PP, Cukerman E, Coles JG, Redington AN (2004) The remote ischemic preconditioning stimulus modifies inflammatory gene expression in humans. Physiol Genomics 19:143–150

    Article  CAS  PubMed  Google Scholar 

  26. Albrecht M, Zitta K, Bein B, Wennemuth G, Broch O, Renner J, Schuett T, Lauer F, Maahs D, Hummitzsch L, Cremer J, Zacharowski K, Meybohm P (2013) Remote ischemic preconditioning regulates HIF-1alpha levels, apoptosis and inflammation in heart tissue of cardiosurgical patients: a pilot experimental study. Basic Res Cardiol 108:314

    Article  PubMed  Google Scholar 

  27. Singh D, Chopra K (2004) Evidence of the role of angiotensin AT1 receptors in remote renal preconditioning of myocardium. Methods Find Exp Clin Pharmacol 26:117–122

    Article  CAS  PubMed  Google Scholar 

  28. Weinbrenner C, Nelles M, Herzog N, Sarvary L, Strasser RH (2002) Remote preconditioning by infrarenal occlusion of the aorta protects the heart from infarction: a newly identified non-neuronal but PKC-dependent pathway. Cardiovasc Res 55:590–601

    Article  CAS  PubMed  Google Scholar 

  29. Yellon DM, Downey JM (2003) Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 83:1113–1151

    CAS  PubMed  Google Scholar 

  30. Hausenloy DJ (2013) Cardioprotection techniques: preconditioning, postconditioning and remote conditioning (basic science). Curr Pharm Des 19:4544–4563

    Article  CAS  PubMed  Google Scholar 

  31. Konstantinov IE, Li J, Cheung MM, Shimizu M, Stokoe J, Kharbanda RK, Redington AN (2005) Remote ischemic preconditioning of the recipient reduces myocardial ischemia-reperfusion injury of the denervated donor heart via a KATP channel-dependent mechanism. Transplantation 79:1691–1695

    Article  PubMed  Google Scholar 

  32. Diwan V, Kant R, Jaggi AS, Singh N, Singh D (2008) Signal mechanism activated by erythropoietin preconditioning and remote renal preconditioning-induced cardioprotection. Mol Cell Biochem 315:195–201

    Article  CAS  PubMed  Google Scholar 

  33. Petrishchev NN, Vlasov TD, Sipovsky VG, Kurapeev DI, Galagudza MM (2001) Does nitric oxide generation contribute to the mechanism of remote ischemic preconditioning? Pathophysiology 7:271–274

    Article  CAS  PubMed  Google Scholar 

  34. Corti P, Gladwin MT (2014) Is nitrite the circulating endocrine effector of remote ischemic preconditioning? Circ Res 114:1554–1557

    Article  CAS  PubMed  Google Scholar 

  35. Rassaf T, Totzeck M, Hendgen-Cotta UB, Shiva S, Heusch G, Kelm M (2014) Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ Res 114:1601–1610

    Article  CAS  PubMed  Google Scholar 

  36. Hausenloy DJ, Lecour S, Yellon DM (2011) Reperfusion injury salvage kinase and survivor activating factor enhancement prosurvival signaling pathways in ischemic postconditioning: two sides of the same coin. Antioxid Redox Signal 14:893–907

    Article  CAS  PubMed  Google Scholar 

  37. Heidbreder M, Naumann A, Tempel K, Dominiak P, Dendorfer A (2008) Remote vs. ischaemic preconditioning: the differential role of mitogen-activated protein kinase pathways. Cardiovasc Res 78:108–115

    Article  CAS  PubMed  Google Scholar 

  38. Charron CE, Chou PC, Coutts DJ, Kumar V, To M, Akashi K, Pinhu L, Griffiths M, Adcock IM, Barnes PJ, Ito K (2009) Hypoxia-inducible factor 1alpha induces corticosteroid-insensitive inflammation via reduction of histone deacetylase-2 transcription. J Biol Chem 284:36047–36054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Eckle T, Kohler D, Lehmann R, El KK, Eltzschig HK (2008) Hypoxia-inducible factor-1 is central to cardioprotection: a new paradigm for ischemic preconditioning. Circulation 118:166–175

    Article  CAS  PubMed  Google Scholar 

  40. Loor G, Schumacker PT (2008) Role of hypoxia-inducible factor in cell survival during myocardial ischemia-reperfusion. Cell Death Differ 15:686–690

    Article  CAS  PubMed  Google Scholar 

  41. Brandenburger T, Huhn R, Galas A, Pannen BH, Keitel V, Barthel F, Bauer I, Heinen A (2014) Remote ischemic preconditioning preserves Connexin 43 phosphorylation in the rat heart in vivo. J Transl Med 12:228

    Article  PubMed Central  PubMed  Google Scholar 

  42. Giricz Z, Varga ZV, Baranyai T, Sipos P, Paloczi K, Kittel A, Buzas EI, Ferdinandy P (2014) Cardioprotection by remote ischemic preconditioning of the rat heart is mediated by extracellular vesicles. J Mol Cell Cardiol 68:75–78

    Article  CAS  PubMed  Google Scholar 

  43. Li J, Rohailla S, Gelber N, Rutka J, Sabah N, Gladstone RA, Wei C, Hu P, Kharbanda RK, Redington AN (2014) MicroRNA-144 is a circulating effector of remote ischemic preconditioning. Basic Res Cardiol 109:423

    Article  PubMed  Google Scholar 

  44. Brandenburger T, Grievink H, Heinen N, Barthel F, Huhn R, Stachuletz F, Kohns M, Pannen B, Bauer I (2014) Effects of remote ischemic preconditioning and myocardial ischemia on microRNA-1 expression in the rat heart in vivo. Shock 42:234–238

    Article  CAS  PubMed  Google Scholar 

  45. Przyklenk K, Whittaker P (2011) Remote ischemic preconditioning: current knowledge, unresolved questions, and future priorities. J Cardiovasc Pharmacol Ther 16:255–259

    Article  PubMed  Google Scholar 

  46. Cheung MM, Kharbanda RK, Konstantinov IE, Shimizu M, Frndova H, Li J, Holtby HM, Cox PN, Smallhorn JF, Van Arsdell GS, Redington AN (2006) Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: first clinical application in humans. J Am Coll Cardiol 47:2277–2282

    Article  PubMed  Google Scholar 

  47. Hausenloy DJ, Mwamure PK, Venugopal V, Harris J, Barnard M, Grundy E, Ashley E, Vichare S, Di SC, Kolvekar S, Hayward M, Keogh B, MacAllister RJ, Yellon DM (2007) Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomised controlled trial. Lancet 370:575–579

    Article  PubMed  Google Scholar 

  48. Thielmann M, Kottenberg E, Kleinbongard P, Wendt D, Gedik N, Pasa S, Price V, Tsagakis K, Neuhauser M, Peters J, Jakob H, Heusch G (2013) Cardioprotective and prognostic effects of remote ischaemic preconditioning in patients undergoing coronary artery bypass surgery: a single-centre randomised, double-blind, controlled trial. Lancet 382:597–604

    Article  PubMed  Google Scholar 

  49. Hoole SP, Heck PM, Sharples L, Khan SN, Duehmke R, Densem CG, Clarke SC, Shapiro LM, Schofield PM, O’Sullivan M, Dutka DP (2009) Cardiac Remote Ischemic Preconditioning in Coronary Stenting (CRISP Stent) Study: a prospective, randomized control trial. Circulation 119:820–827

    Article  PubMed  Google Scholar 

  50. Loukogeorgakis SP, Panagiotidou AT, Broadhead MW, Donald A, Deanfield JE, MacAllister RJ (2005) Remote ischemic preconditioning provides early and late protection against endothelial ischemia-reperfusion injury in humans: role of the autonomic nervous system. J Am Coll Cardiol 46:450–456

    Article  CAS  PubMed  Google Scholar 

  51. Slagsvold KH, Rognmo O, Hoydal M, Wisloff U, Wahba A (2014) Remote ischemic preconditioning preserves mitochondrial function and influences myocardial microRNA expression in atrial myocardium during coronary bypass surgery. Circ Res 114:851–859

    Article  CAS  PubMed  Google Scholar 

  52. Candilio L, Malik A, Ariti C, Barnard M, Di SC, Lawrence D, Hayward M, Yap J, Roberts N, Sheikh A, Kolvekar S, Hausenloy DJ, Yellon DM (2014) Effect of remote ischaemic preconditioning on clinical outcomes in patients undergoing cardiac bypass surgery: a randomised controlled clinical trial. Heart. doi:10.1136/heartjnl-2014-306178

    PubMed  Google Scholar 

  53. Botker HE, Kharbanda R, Schmidt MR, Bottcher M, Kaltoft AK, Terkelsen CJ, Munk K, Andersen NH, Hansen TM, Trautner S, Lassen JF, Christiansen EH, Krusell LR, Kristensen SD, Thuesen L, Nielsen SS, Rehling M, Sorensen HT, Redington AN, Nielsen TT (2010) Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet 375:727–734

    Article  PubMed  Google Scholar 

  54. McCrindle BW, Clarizia NA, Khaikin S, Holtby HM, Manlhiot C, Schwartz SM, Caldarone CA, Coles JG, Van Arsdell GS, Scherer SW, Redington AN (2014) Remote ischemic preconditioning in children undergoing cardiac surgery with cardiopulmonary bypass: a single-center double-blinded randomized trial. J Am Heart Assoc. doi:10.1161/JAHA.114.000964

    PubMed  Google Scholar 

  55. Kono Y, Fukuda S, Hanatani A, Nakanishi K, Otsuka K, Taguchi H, Shimada K (2014) Remote ischemic conditioning improves coronary microcirculation in healthy subjects and patients with heart failure. Drug Des Dev Ther 8:1175–1181

    Google Scholar 

  56. Ding YF, Zhang MM, He RR (2000) Ischemic preconditioning reduces cardiomyocytic apoptosis in rabbit heart in vivo. Sheng Li Xue Bao 52:220–224

    CAS  PubMed  Google Scholar 

  57. Zhang SZ, Wang NF, Xu J, Gao Q, Lin GH, Bruce IC, Xia Q (2006) Kappa-opioid receptors mediate cardioprotection by remote preconditioning. Anesthesiology 105:550–556

    Article  CAS  PubMed  Google Scholar 

  58. Davidson SM, Selvaraj P, He D, Boi-Doku C, Yellon RL, Vicencio JM, Yellon DM (2013) Remote ischaemic preconditioning involves signalling through the SDF-1alpha/CXCR4 signalling axis. Basic Res Cardiol 108:377

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Grants from National Institutes of Health (HL51045, HL79424, HL118808 to RCK) and the American Heart Association (14GRNT20010003 to FNS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh C. Kukreja.

Additional information

Rabia Gill and Robin Kuriakose have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gill, R., Kuriakose, R., Gertz, Z.M. et al. Remote ischemic preconditioning for myocardial protection: update on mechanisms and clinical relevance. Mol Cell Biochem 402, 41–49 (2015). https://doi.org/10.1007/s11010-014-2312-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2312-z

Keywords

Navigation