Skip to main content
Log in

Novel action of vinpocetine in the prevention of paraquat-induced parkinsonism in mice: involvement of oxidative stress and neuroinflammation

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a multifactorial chronic progressive neurodegenerative disease caused by age, genetic and environmental factors such as paraquat (PQT). PQT (a quartenary nitrogen herbicide) is implicated in some form of idiopathic PD. This study sought to investigate the protective effect of vinpocetine on paraquat-induced Parkinsonism in mice. Forty-eight male albino mice were randomly divided into 6 groups and treated orally as follows for 21 days; Group 1: vehicle normal (10 ml/kg), group 2: vehicle control (10 ml/kg); groups 3–5: vinpocetine (5, 10 or 20 mg/kg); group 6: vinpocetine (20 mg/kg). Animals in groups 2–5 were given PQT (10 mg/kg, i.p.) every 3 days for 3 weeks. The effect of treatments on spontaneous motor activity (open field test), muscle coordination (rotarod tests), cataleptic behaviour (bar test), and working memory (Y-maze test) were assayed. After the behavioural assay on day 21, the midbrain was isolated for estimation of oxidative stress and TNF-α. Intraperitoneal injection of paraquat significantly induced motor deficits, muscle incoordination, catalepsy and working memory impairment which was ameliorated by the pretreatment of mice with vinpocetine. In addition, paraquat injection caused marked increase in nitroso-oxidative stress markers with concomitant deficits in antioxidant enzymes activities (GSH and SOD) as well as induction of tumour necrotic factor-α (TNF-α) in the mid-brain which were attenuated by the pretreatment of mice with vinpocetine. Findings from this study showed that vinpocetine prevented paraquat-induced motor deficits, memory impairment, oxidative stress and neuroinflammation through enhancement of antioxidant defense system and inhibition of neuroinflammatory cytokine. Thus, could be a potential drug in the management of Parkinsonism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adeyemi OO, Ishola IO, Adedeji HA (2013) Novel action of metformin in the prevention of haloperidol-induced catalepsy in mice: Potential in the treatment of Parkinson's disease? Prog Neuro-Psychopharmacol Biol Psychiatry 48:245–251. https://doi.org/10.1016/j.pnpbp.2013.10.014

    Article  CAS  Google Scholar 

  • Berry C, La Vecchia C, Nicotera P (2010) Paraquat and Parkinson's disease. Cell Death Differ 17(7):1115–1125

    Article  CAS  PubMed  Google Scholar 

  • Blanco-Ayala T, Andérica-Romero AC, Pedraza-Chaverri J (2014) New insights into antioxidant strategies against paraquat toxicity. Free Radic Res 48(6):623–640

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging 24(2):197–211

    Article  PubMed  Google Scholar 

  • Brooks AI, Chadwick CA, Gelbard HA, Cory-Slechta DA, Federoff HJ (1999) Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res 823(1–2):1–10

    Article  CAS  PubMed  Google Scholar 

  • Brown RE, Corey SC, Moore AK (1999) Differences in measures of exploration and fear in MHC-congenic C57BL/6J and B6-H-2K mice. Behav Genet 1999(26):263–271

    Article  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Knight WE, Guo S, Li JD, Knight PA, Yan C (2012) Vinpocetine suppresses pathological vascular remodeling by inhibiting vascular smooth muscle cell proliferation and migration. J Pharmacol Exp Ther 343(2):479–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Y, Li JD, Yan C (2013) Vinpocetine attenuates lipid accumulation and atherosclerosis formation. Biochem Biophys Res Commun 434(3):439–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Niu Y, Zhang R, Guo H, Gao Y, Li Y, Liu R (2010) The toxic influence of paraquat on hippocampus of mice: involvement of oxidative stress. Neurotoxicology 31(3):310–316

    Article  CAS  PubMed  Google Scholar 

  • Colnat-Coulbois S, Gauchard GC, Maillard L, Barroche G, Vespignani H, Auque J, Perrin PP (2005) Bilateral subthalamic nucleus stimulation improves balance control in Parkinson's disease. J Neurol Neurosurg Psychiatry 76(6):780–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corti O, Hampe C, Darios F, Ibanez P, Ruberg M, Brice A (2005) Parkinson's disease: from causes to mechanisms. C R Biol 328(2):131–142

    Article  CAS  PubMed  Google Scholar 

  • Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B (2009) Parkinson's disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. Am J Epidemiol 169(8):919–926

    Article  PubMed  PubMed Central  Google Scholar 

  • Day BJ, Patel M, Calavetta L, Chang LY, Stamler JS (1999) A mechanism of paraquat toxicity involving nitric oxide synthase. Proc Natl Acad Sci U S A 96(22):12760–12765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahim MA, Shehab S, Nemmar A, Adem A, Dhanasekaran S, Hasan MY (2013) Daily subacute paraquat exposure decreases muscle function and substantia nigra dopamine level. Physiol Res 62(3):313–321

    CAS  PubMed  Google Scholar 

  • Hoffman DC, Donovan H (1995) Catalepsy as a rodent model for detecting antipsychotic drugs with extrapyramidal side effect liability. Psychopharmacology 120(2):128–133

    Article  CAS  PubMed  Google Scholar 

  • Ishola IO, Chaturvedi JP, Rai S, Rajasekar N, Adeyemi OO, Shukla R, Narender T (2013) Evaluation of amentoflavone isolated from Cnestis ferruginea Vahl ex DC (Connaraceae) on production of inflammatory mediators in LPS stimulated rat astrocytoma cell line (C6) and THP-1 cells. J Ethnopharmacol 146(2):440–448

    Article  CAS  PubMed  Google Scholar 

  • Ishola IO, Adamson FM, Adeyemi OO (2017) Ameliorative effect of kolaviron, a biflavonoid complex from Garcinia kola seeds against scopolamine-induced memory impairment in rats: role of antioxidant defense system. Metab Brain Dis 32(1):235–245

    Article  CAS  PubMed  Google Scholar 

  • Jeon KI, Xu X, Aizawa T, Lim JH, Jono H, Kwon DS, Abe J, Berk BC, Li JD, Yan C (2010) Vinpocetine inhibits NF-kappaB-dependent inflammation via an IKK-dependent but PDE-independent mechanism. Proc Natl Acad Sci U S A 107(21):9795–9800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuter K, Smiałowska M, Wierońska J, Zieba B, Wardas J, Pietraszek M, Nowak P, Biedka I, Roczniak W, Konieczny J, Wolfarth S, Ossowska K (2007) Toxic influence of subchronic paraquat administration on dopaminergic neurons in rats. Brain Res 1155:196–207

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–75

  • Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, Di Monte DA (2002) The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha-synuclein. J Biol Chem 277(3):1641–1644

    Article  CAS  PubMed  Google Scholar 

  • McCormack AL, Thiruchelvam M, Manning-Bog AB, Thiffault C, Langston JW, Cory-Slechta DA, Di Monte DA (2002) Environmental risk factors and Parkinson's disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis 10(2):119–127

    Article  CAS  PubMed  Google Scholar 

  • Miranda-Contreras L, Dávila-Ovalles R, Benítez-Díaz P, Peña-Contreras Z, Palacios-Prü E (2005) Effects of prenatal paraquat and mancozeb exposure on amino acid synaptic transmission in developing mouse cerebellar cortex. Brain Res Dev Brain Res 160(1):19–27

    Article  CAS  PubMed  Google Scholar 

  • Mitra S, Chakrabarti N, Bhattacharyya A (2011) Differential regional expression patterns of α-synuclein, TNF-α, and IL-1β; and variable status of dopaminergic neurotoxicity in mouse brain after Paraquat treatment. J Neuroinflammation 8:163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molnár P, Gaál L, Horváth C (1994) The impairment of long-term potentiation in rats with medial septal lesion and its restoration by cognition enhancers. Neurobiology (Bp) 2(3):255–266

    Google Scholar 

  • Ogunrin A (2014) Effect of vinpocetine (cognitol™) on cognitive performances of a nigerian population. Ann Med Health Sci Res 4(4):654–661

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng J, Mao XO, Stevenson FF, Hsu M, Andersen JK (2004) The herbicide paraquat induces dopaminergic nigral apoptosis through sustained activation of the JNK pathway. J Biol Chem 279(31):32626–32632

    Article  CAS  PubMed  Google Scholar 

  • Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Anal Biochem 25(1):192–205

    Article  CAS  PubMed  Google Scholar 

  • Steece-Collier K, Maries E, Kordower JH (2002) Etiology of Parkinson's disease: Genetics and environment revisited. Proc Natl Acad Sci U S A 99(22):13972–13974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suganya SN, Sumathi T (2017) Effect of rutin against a mitochondrial toxin, 3-nitropropionicacid induced biochemical, behavioral and histological alterations-a pilot study on Huntington's disease model in rats. Metab Brain Dis 32(2):471–481

    Article  CAS  PubMed  Google Scholar 

  • Sun YH, Li Y, Niu YJ, Chen Q, Zhang R. (2011) Effects of paraquat on the learning and memory ability in developing mice. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 29(6):437–439

  • Tweedie D, Sambamurti K, Greig NH (2007) TNF-alpha inhibition as a treatment strategy for neurodegenerative disorders: new drug candidates and targets. Curr Alzheimer Res 4:378–385

    Article  CAS  PubMed  Google Scholar 

  • Vaccari C, El Dib R, de Camargo JLV (2017) Paraquat and Parkinson's disease: a systematic review protocol according to the OHAT approach for hazard identification. Syst Rev 6(1):98

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaitone SA, Abo-Elmatty DM, Elshazly SM (2012) Piracetam and vinpocetine ameliorate rotenone-induced Parkinsonism in rats. Indian J Pharm 44(6):774–779

    Article  CAS  Google Scholar 

  • Zhang YS, Li JD, Yan C (2018) An update on vinpocetine: New discoveries and clinical implications. Eur J Pharmacol 819:30–34

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Mr. S.A. Adenekan of the Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, for his technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail O. Ishola.

Ethics declarations

Conflict of interest

We do not have any conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishola, I.O., Akinyede, A.A., Adeluwa, T.P. et al. Novel action of vinpocetine in the prevention of paraquat-induced parkinsonism in mice: involvement of oxidative stress and neuroinflammation. Metab Brain Dis 33, 1493–1500 (2018). https://doi.org/10.1007/s11011-018-0256-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-018-0256-9

Keywords

Navigation