Skip to main content
Log in

Ultra-dense genetic map of durum wheat × wild emmer wheat developed using the 90K iSelect SNP genotyping assay

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Wild emmer wheat (T. turgidum ssp. dicoccoides, genome BBAA) gene pool is an important source for wheat research and improvement. To utilize this resource, we hybridized wild emmer wheat (subpopulation judaicum, accession Zavitan) with durum wheat (T. turgidum ssp. durum, cv. Svevo) and developed an F6 recombinant inbred line (RIL) population. The wheat 90K iSelect SNP genotyping assay was used for genotyping of the RILs, detecting segregation for 16,387 polymorphic markers. The genetic map was constructed based on the genotypic data of 140 RILs and included a total of 14,088 markers grouped into 2,296 genetic loci in 14 linkage groups, corresponding to the 14 chromosomes of tetraploid wheat. The map was 2,110 cM long with an average distance of 0.92 cM between adjacent markers. The B genome was slightly more polymorphic (57 %) for co-dominant SNP markers than the A genome. The map included 1,012 null allele markers, in which only one SNP allele was detected, and the frequency of these markers in the B genome of wild emmer greatly exceeded that of the A genome (69 and 31 %, respectively), which may reflect a greater rate of genomic changes in the B genome. Comparison of our mapped SNP sequences with the barley genome revealed that most of the markers (92.4 %) were syntenic. This ultra-dense SNP-based genetic map with a high level of synteny to barley provides a useful framework for genetic analyses of important traits, positional cloning and marker-assisted selection, as well as for comparative genomics and genome organization studies in wheat and other cereals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aaronsohn A (1910) Agricultural and botanical explorations in Palestine, vol 180. Bureau Plant Industry Bull, USDA, pp 1–63

    Google Scholar 

  • Akhunov ED, Akhunova AR, Linkiewicz AM, Dubcovsky J, Hummel D, Lazo G, Chao SM, Anderson OD, David J, Qi LL, Echalier B, Gill BS, Gustafson MJP, La Rota M, Sorrells ME, Zhang DS, Nguyen HT, Kalavacharla V, Hossain K, Kianian SF, Peng JH, Lapitan NLV, Wennerlind EJ, Nduati V, Anderson JA, Sidhu D, Gill KS, McGuire PE, Qualset CO, Dvorak J (2003) Synteny perturbations between wheat homoeologous chromosomes caused by locus duplications and deletions correlate with recombination rates. Proc Natl Acad Sci USA 100:10836–10841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Akhunov ED, Akhunova AR, Anderson OD, Anderson JA, Blake N, Clegg MT, Coleman-Derr D, Conley EJ, Crossman CC, Deal KR, Dubcovsky J, Gill BS, Gu YQ, Hadam J, Heo H, Huo N, Lazo GR, Luo M, Ma YQ, Matthews DE, McGuire PE, Morrell PL, Qualset CO, Renfro J, Tabanao D, Talbert LE, Tian C, Toleno DM, Warburton ML, You FM, Zhang W, Dvorak J (2010) Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes. BMC Genom 11:702

    Article  CAS  Google Scholar 

  • Blumler MA (1997) Introgression of durum into wild emmer and the agricultural origin question. In: Damania AB, Valkoun J, Willcox G, Qualset CO (eds) The origins of agriculture and crop domestication. ICARDA, IPGRI, FAO and UC/GRCP, ICARDA, Aleppo, Syria, pp 252–268

    Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 15(10):421

    Article  Google Scholar 

  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva ML, Bockelman H, Talbert L, Anderson JA, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell PL, Dubcovsky J, Morell MK, Sorrells ME, Hayden MJ, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci U S A 110:8057–8062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen H, He H, Zhou F, Yu H, Deng XW (2013) Development of genomics-based genotyping platforms and their applications in rice breeding. Curr Opin Plant Biol 16:247–254

    Article  CAS  PubMed  Google Scholar 

  • Colasuonno P, Maria MA, Blanco A, Gadaleta A (2013) Description of durum wheat linkage map and comparative sequence analysis of wheat mapped DArT markers with rice and Brachypodium genomes. MCenetics 14:114

    Google Scholar 

  • Dray S, Dufour A (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Software 22:1–20

    Google Scholar 

  • Dvorak J, Chen KC (1984) Distribution of nonstructural variation between wheat cultivars along chromosome arm-6 bp: evidence from the linkage map and physical map of the arm. Genetics 106:325–333

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dvorak J, Luo M, Akhunov ED (2011) NI Vavilov’s theory of centres of diversity in the light of current understanding of wheat diversity, domestication and evolution. Czech J Genet Plant Breed 47:S20–S27

    Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (gbs) approach for high diversity species. PLoS ONE 6:e19379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • FAO (2011) FAOSTAT. http://faostat3.fao.org/home/index.html#DOWNLOAD. Food and Agriculture Organization of the United Nations, Rome. Accessed 23 Jul 2014

  • Faris JD, Haen KM, Gill BS (2000) Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 154:823–835

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feldman M, Levy AA, Fahima T, Korol A (2012) Genomic asymmetry in allopolyploid plants: wheat as a model. J Exp Bot 63:5045–5059

    Article  CAS  PubMed  Google Scholar 

  • Gadaleta A, Giancaspro A, Giove SL, Zacheo S, Mangini G, Simeone R, Signorile A, Blanco A (2009) Genetic and physical mapping of new EST-derived SSRs on the A and B genome chromosomes of wheat. Theor Appl Genet 118:1015–1025

    Article  CAS  PubMed  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Boyko EV (1996) Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143:1001–1012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gorelick R (2003) Transposable elements suppress recombination in all meiotic eukaryotes, including automictic ancient asexuals: a reply to Schon and Martens. J Nat Hist 37:903–909

    Article  Google Scholar 

  • Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, Hochu I, Poirier S, Santoni S, Glemin S, David J (2007) Grinding up wheat: A massive loss of nucleotide diversity since domestication. Mol Biol Evol 24:1506–1517

    Article  CAS  PubMed  Google Scholar 

  • Isidore E, van Os H, Andrzejewski S, Bakker J, Barrena I, Bryan GJ, Caromel B, van Eck H, Ghareeb B, de Jong W, van Koert P, Lefebvre V, Milbourne D, Ritter E, van der Voort JR, Rousselle-Bourgeois F, van Vliet J, Waugh R (2003) Toward a marker-dense meiotic map of the potato genome: lessons from linkage group I. Genetics 165:2107–2116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Korol AB, Preygel IA, Preygel SI (1994) Recombination variability and evolution. Chapman & Hall, London

    Google Scholar 

  • Luo M, Yang Z, You FM, Kawahara T, Waines JG, Dvorak J (2007) The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication. Theor Appl Genet 114:947–959

    Article  PubMed  Google Scholar 

  • Luo M, Gu YQ, You FM, Deal KR, Ma Y, Hu Y, Huo N, Wang Y, Wang J, Chen S, Jorgensen CM, Zhang Y, McGuire PE, Pasternak S, Stein JC, Ware D, Kramer M, McCombie WR, Kianian SF, Martis MM, Mayer KFX, Sehgal SK, Li W, Gill BS, Bevan MW, Šimková H, Doležel J, Weining S, Lazo GR, Anderson OD, Dvorak J (2013) A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proc Natl Acad Sci 110:7940–7945

  • Lyttle TW (1991) Segregation Distorters. Annu Rev Genet 25:511–557

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Stiller J, Berkman PJ, Wei Y, Rogers J, Feuillet C, Dolezel J, Mayer KF, Eversole K, Zheng Y, Liu C (2013) Sequence-based analysis of translocations and inversions in bread wheat (Triticum aestivum L.). PLoS ONE 8:e79329

    Article  PubMed Central  PubMed  Google Scholar 

  • Maccaferri M, Cane’ MA, Sanguineti MC, Salvi S, Colalongo MC, Massi A, Clarke F, Knox R, Pozniak CJ, Clarke JM, Fahima T, Dubcovsky J, Xu S, Ammar K, Karsai I, Vida G, Tuberosa R (2014a) A consensus framework map of durum wheat (Triticum durum Desf.) suitable for linkage disequilibrium analysis and genome-wide association mapping. BMC Genomics 15:873. http://www.biomedcentral.com/1471-2164/15/873

  • Maccaferri M, Ricci A, Salvi S, Milner SG, Noli E, Martelli PL, Casadio R, Akhunov E, Scalabrin S, Vendramin V, Ammar K, Blanco A, Desiderio F, Distelfeld A, Dubcovsky J, Fahima T, Faris J, Korol A, Massi A, Mastrangelo AM, Morgante M, Pozniak CJ, N'Diaye A, Xu S, Tuberosa R (2014b) A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotech J (in press)

  • Marone D, Laido G, Gadaleta A, Colasuonno P, Ficco DBM, Giancaspro A, Giove S, Panio G, Russo MA, De Vita P, Cattivelli L, Papa R, Blanco A, Mastrangelo AM (2012) A high-density consensus map of A and B wheat genomes. Theor Appl Genet 125:1619–1638

    Article  PubMed Central  PubMed  Google Scholar 

  • Mayer KFX, Martis M, Hedley PE, Simkova H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubalakova M, Suchankova P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Dolezel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mayer KFX, Waugh R, Langridge P, Close TJ, Wise RP, Graner A, Matsumoto T, Sato K, Schulman A, Muehlbauer GJ, Stein N, Ariyadasa R, Schulte D, Poursarebani N, Zhou R, Steuernagel B, Mascher M, Scholz U, Shi B, Langridge P, Madishetty K, Svensson JT, Bhat P, Moscou M, Resnik J, Close TJ, Muehlbauer GJ, Hedley P, Liu H, Morris J, Waugh R, Frenkel Z, Korol A, Berges H, Graner A, Stein N, Steuernagel B, Taudien S, Groth M, Felder M, Platzer M, Brown JWS, Schulman A, Platzer M, Fincher GB, Muehlbauer GJ, Sato K, Taudien S, Sampath D, Swarbreck D, Scalabrin S, Zuccolo A, Vendramin V, Morgante M, Mayer KFX, Schulman A, Int Barley Genome Sequencing Conso (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    CAS  PubMed  Google Scholar 

  • Melamed-Bessudo C, Levy AA (2012) Deficiency in DNA methylation increases meiotic crossover rates in euchromatic but not in heterochromatic regions in Arabidopsis. Proc Natl Acad Sci U S A 109:E981–E988

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Menzo V, Giancaspro A, Giove S, Nigro D, Zacheo S, Colasuonno P, Marcotuli I, Incerti O, Blanco A, Gadaleta A (2013) TRAP molecular markers as a system for saturation of the genetic map of durum wheat. Euphytica 194:151–160

    Article  CAS  Google Scholar 

  • Mester D, Ronin Y, Minkov D, Nevo E, Korol A (2003a) Constructing large-scale genetic maps using an evolutionary strategy algorithm. Genetics 165:2269–2282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mester DI, Ronin YI, Hu Y, Peng J, Nevo E, Korol AB (2003b) Efficient multipoint mapping: making use of dominant repulsion-phase markers. Theor Appl Genet 107:1102–1112

    Article  CAS  PubMed  Google Scholar 

  • Mester DI, Ronin YI, Nevo E, Korol AO (2004) Fast and high precision algorithms for optimization in large-scale genomic problems. Comput Biol Chem 28:281–290

    Article  CAS  PubMed  Google Scholar 

  • Nasuda S, Friebe B, Gill BS (1998) Gametocidal genes induce chromosome breakage in the interphase prior to the first mitotic cell division of the male gametophyte in wheat. Genetics 149:1115–1124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nevo E, Golenberg E, Beiles A, Brown AHD, Zohary D (1982) Genetic diversity and environmental associations of wild wheat, Triticum dicoccoides, in Israel. Theor Appl Genet 62:241–254

    CAS  PubMed  Google Scholar 

  • Ozkan H, Brandolini A, Pozzi C, Effgen S, Wunder J, Salamini F (2005) A reconsideration of the domestication geography of tetraploid wheats. Theor Appl Genet 110:1052–1060

    Article  CAS  PubMed  Google Scholar 

  • Ozkan H, Willcox G, Graner A, Salamini F, Kilian B (2011) Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides). Genet Resour Crop Evol 58:11–53

    Article  Google Scholar 

  • Peleg Z, Saranga Y, Suprunova T, Ronin Y, Roeder MS, Kilian A, Korol AB, Fahima T (2008) High-density genetic map of durum wheat × wild emmer wheat based on SSR and DArT markers. Theor Appl Genet 117:103–115

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Korol AB, Fahima T, Roder MS, Ronin YI, Li YC, Nevo E (2000) Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 10:1509–1531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink J (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7:e32253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poursarebani N, Nussbaumer T, Simkova H, Safar J, Witsenboer H, van Oeveren J, Dolezel J, Mayer KFX, Stein N, Schnurbusch T (2014) Whole-genome profiling and shotgun sequencing delivers an anchored, gene-decorated, physical map assembly of bread wheat chromosome 6A. Plant 79:334–347

    Article  CAS  Google Scholar 

  • Poyarkova H (1988) Morphology, geography and infraspecific taxonomics of Triticum dicoccoides Korn: a retrospective of 80 years of research. Euphytica 38:11–23

    Article  Google Scholar 

  • Poyarkova H, Gerechteramitai ZK, Genizi A (1991) 2 Variants of wild emmer (Triticum-Dicoccoides) native to israel: morphology and distribution. Can J Bot 69:2772–2789

    Article  Google Scholar 

  • R Development Core Team (2013) R: A language and environment for statistical computing. R Fundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.

  • Raats D, Frenkel Z, Krugman T, Dodek I, Sela H, Simkova H, Magni F, Cattonaro F, Vautrin S, Berges H, Wicker T, Keller B, Leroy P, Philippe R, Paux E, Dolezel J, Feuillet C, Korol A, Fahima T (2013) The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution. Genome Biol 14:R138

    Article  PubMed Central  PubMed  Google Scholar 

  • Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rong JK, Millet E, Manisterski J, Feldman M (2000) A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica 115:121–126

    Article  CAS  Google Scholar 

  • Ronin Y, Mester D, Minkov D, Korol A (2010) Building reliable genetic maps: different mapping strategies may result in different maps. Nat Sci 2:576–589

    CAS  Google Scholar 

  • Ronin Y, Mester D, Minkov D, Akhunov E, Korol A (2014) Building ultra-dens genetic maps in the presence of genotyping errors and missing data. In: Matsuoka Y, Takumi S (ed), Proceedings of the 12th IWGS, Yokohama, Japan. Springer (In press)

  • Singh K, Ghai M, Garg M, Chhuneja P, Kaur P, Schnurbusch T, Keller B, Dhaliwal HS (2007) An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum × T-monococcum RIL population. Theor Appl Genet 115:301–312

    Article  CAS  PubMed  Google Scholar 

  • Steemers FJ, Chang WH, Lee G, Barker DL, Shen R, Gunderson KL (2006) Whole-genome genotyping with the single-base extension assay. Nat Methods 3:31–33

    Article  CAS  PubMed  Google Scholar 

  • Trebbi D, Maccaferri M, de Heer P, Sorensen A, Giuliani S, Salvi S, Sanguineti MC, Massi A, van der Vossen EAG, Tuberosa R (2011) High-throughput SNP discovery and genotyping in durum wheat (Triticum durum Desf.). Theor Appl Genet 123:555–569

    Article  PubMed  Google Scholar 

  • van Poecke RMP, Maccaferri M, Tang J, Truong HT, Janssen A, van Orsouw NJ, Salvi S, Sanguineti MC, Tuberosa R, van der Vossen EAG (2013) Sequence-based SNP genotyping in durum wheat. Plant Biotechnol J 11:809–817

    Article  PubMed  Google Scholar 

  • Voudouris C (1997) Guided local search for combinatorial problems, Ph.D. thesis, Department of Computer Science, University of Essex, Colchester

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, International Wheat Genome Sequencing Consortium, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) haracterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism arrayPlant. Biotechnol J. doi:10.1111/pbi.12183

    Google Scholar 

Download references

Acknowledgments

A. Distelfeld acknowledged support from the Marie Curie International Reintegration Grant Number PIRG08-GA-2010-277036 and from the ISRAEL SCIENCE FOUNDATION (Grant Nos. 999/12 and 1824/12). Seeds of TTD140 and G18-16 were kindly provided by Prof. M. Feldman (Weizmann Institute) and Prof. T. Fahima (University of Haifa), respectively. We thank A. Avneri for his assistance in constructing the RILs population.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assaf Distelfeld.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avni, R., Nave, M., Eilam, T. et al. Ultra-dense genetic map of durum wheat × wild emmer wheat developed using the 90K iSelect SNP genotyping assay. Mol Breeding 34, 1549–1562 (2014). https://doi.org/10.1007/s11032-014-0176-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0176-2

Keywords

Navigation