Skip to main content
Log in

Precise identification of two wheat–Thinopyrum intermedium substitutions reveals the compensation and rearrangement between wheat and Thinopyrum chromosomes

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Two wheat–Thinopyrum substitution lines X479 and X482 selected from the progenies of wheat “Mianyang26 (MY26)” × wheat–Thinopyrum intermedium ssp. trichophorum partial amphiploid were characterized by seed storage protein electrophoresis, genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), and PCR-based molecular markers. Seed storage protein analysis showed that X479 expressed some of Th. intermedium ssp. trichophorum-specific gliadin and glutenin bands. Chromosome counting and GISH probed by Pseudoroegneria spicata genomic DNA indicated that two pairs of Thinopyrum-derived chromosomes (St genome and St–JS translocated chromosomes) substituted for two pairs of wheat chromosomes in both X479 and X482. FISH using pAs1 and pHvG38 as probes showed that chromosomes 1B and 4B, and 4D and 6D were absent in X479 and X482, respectively. Using the newly isolated JS chromosome-specific repetitive sequence pDb12H as a probe, the FISH signals revealed that the translocation of St–JS chromosomes in X479 and X482 occurred in repetitive sequence regions of the short arm. The molecular markers based on wheat–rice colinearity confirmed that the chromosome constitutions of X479 and X482 were 1St (1B) + 4St–4JS (4B) and 4St–JS (4D) + 6St (6D), respectively. The substitution lines were both fully fertile which suggests that the Th. intermedium chromosomes in X479 and X482 substitute well for the corresponding wheat chromosomes. The rust resistance and novel agronomic traits revealed that the substitution lines will be potentially useful for genetic improvement of wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Cauderon Y, Saigne B, Dauge M (1973) The resistance to wheat rusts of Agropyron intermedium and its use in wheat improvement. In: Sears ER, Sears LMS (eds) Proc 4th Int Wheat Genet Symp, University of Missouri, Columbia, pp 401–407

  • Chen Q (2005) Detection of alien chromatin introgression from Thinopyrum into wheat using S genomic DNA as a probe: a landmark approach for Thinopyrum genome research. Cytogenet Genome Res 109:350–359

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Conner RL, Laroche A, Thomas JB (1998) Genome analysis of Thinopyrum intermedium and Th. ponticum using genomic in situ hybridization. Genome 141:580–586

    Article  Google Scholar 

  • Chen Q, Conner RL, Laroche A, Ji W, Armstrong KC, Fedak G (1999) Genomic in situ hybridization analysis of Thinopyrum chromatin in a wheat–Th. intermedium partial amphiploid and six derived chromosome addition lines. Genome 42:1217–1223

    Article  CAS  PubMed  Google Scholar 

  • Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP (ed) Gene manipulation in plant improvement, vol 16. Plenum Press, New York, pp 209–279

    Chapter  Google Scholar 

  • Friebe B, Mukai Y, Gill BS, Cauderon Y (1992) C-banding and in situ hybridization analyses of Agropyron intermedium, a partial wheat -Ag. intermedium amphiploid, and six derived chromosome addition lines. Theor Appl Genet 84:899–905

    CAS  PubMed  Google Scholar 

  • Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34:830–839

    Article  Google Scholar 

  • Han H, Bai L, Su J, Zhang J, Song L, Gao A, Yang X, Li X, Liu W, Li L (2014) Genetic rearrangements of six wheat–Agropyron cristatum 6P addition lines revealed by molecular markers. PLoS ONE 9:e91066

    Article  PubMed Central  PubMed  Google Scholar 

  • Hu LJ, Li GR, Zeng ZX, Chang ZJ, Liu C, Zhou JP, Yang ZJ (2011) Molecular cytogenetic identification of a new wheat–Thinopyrum substitution line with stripe rust resistance. Euphytica 177:169–177

    Article  Google Scholar 

  • Hu LJ, Li GR, Zhan HX, Liu C, Yang ZJ (2012) New St-chromosome specific molecular markers for identifying wheat–Thinopyrum intermedium derivative lines. J Genet 91:e69–e74

    PubMed  Google Scholar 

  • Ishikawa G, Nakamura T, Ashida T, Saito M, Nasuda S, Endo TR, Wu J, Matsumoto T (2009) Localization of anchor loci representing five hundred annotated rice genes to wheat chromosomes using PLUG markers. Theor Appl Genet 118:499–514

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Friebe B, Gill BS (1994) Recent advances in alien gene transfer in wheat. Euphytica 73:199–212

    Article  Google Scholar 

  • Li H, Wang X (2009) Thinopyrum ponticum and the promising source of resistance to fungal and viral diseases of wheat. J Genet Genomics 36:557–565

    Article  CAS  PubMed  Google Scholar 

  • Li HJ, Arterburn M, Jones SS, Murray TD (2005) Resistance to eyespot of wheat, caused by Tapesia yallundae, derived from Thinopyrum intermedium homoeologous group 4 chromosomes. Theor Appl Genet 111:932–940

    Article  CAS  PubMed  Google Scholar 

  • Li GR, Liu C, Li CH, Zhao JM, Zhou L, Dai G, Yang EN, Yang ZJ (2013a) Introgression of a novel Thinopyrum intermedium St-chromosome-specific HMW-GS gene into wheat. Mol Breed 31:843–853

    Article  CAS  Google Scholar 

  • Li J, Endo TR, Saito M, Ishikawa G, Nakamura T, Nasuda S (2013b) Homoeologous relationship of rye chromosome arms as detected with wheat PLUG markers. Chromosoma 122:555–564

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Yang ZJ, Jia JQ, Li GR, Zhou JP, Ren ZL (2009) Genomic distribution of a long terminal repeat (LTR) Sabrina-like retrotransposon in Triticeae species. Cereal Res Commun 37:363–372

    Article  CAS  Google Scholar 

  • Ma H, Singh RP, Mujeeb-Kazi A (1995) Suppression/expression of resistance to stripe rust in synthetic hexaploid wheat (Triticum turgidum × T. tauschii). Euphytica 83:87–93

    Article  Google Scholar 

  • Mahelka V, Kopecky D, Pastova L (2011) On the genome constitution and evolution of intermediate wheatgrass (Thinopyrum intermedium: Poaceae, Triticeae). BMC Evol Biol 11:127

    Article  PubMed Central  PubMed  Google Scholar 

  • Mahelka V, Kopecky D, Baum BR (2013) Contrasting patterns of evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae). Mol Biol Evol 30:2065–2086

    Article  CAS  PubMed  Google Scholar 

  • Molnár I, Cifuentes M, Schneider A, Benavente E, Molnár-Láng M (2011) Association between simple sequence repeat-rich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats. Ann Bot 107:65–76

    Article  PubMed Central  PubMed  Google Scholar 

  • Mukai Y, Friebe B, Hatchett JH, Yamamoto M, Gill BS (1993) Molecular cytogenetic analysis of radiation-induced wheat rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma 102:88–95

    Article  Google Scholar 

  • Niu Z, Klindworth DL, Yu G, Friesen TL, Chao S, Jin Y, Cai X, Ohm JB, Rasmussen JB, Xu SS (2014) Development and characterization of wheat lines carrying stem rust resistance gene Sr43 derived from Thinopyrum ponticum. Theor Appl Genet 127:969–980

    Article  CAS  PubMed  Google Scholar 

  • Pedersen C, Langridge P (1997) Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome 40:589–593

    Article  CAS  PubMed  Google Scholar 

  • Rayburn AL, Gill BS (1986) Isolation of a D genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol Biol Rep 4:102–109

    Article  CAS  Google Scholar 

  • Song XJ, Li GR, Zhan HX, Liu C, Yang ZJ (2013) Molecular identification of a new wheat–Thinopyrum intermedium ssp. trichophorum addition line for resistance to stripe rust. Cereal Res Commun 41:211–220

    Article  CAS  Google Scholar 

  • Tang S, Li Z, Jia X, Larkin PJ (2000) Genomic in situ hybridization (GISH) analyses of Thinopyrum intermedium, its partial amphiploid Zhong 5, and disease-resistant derivatives in wheat. Theor Appl Genet 100:344–352

    Article  CAS  Google Scholar 

  • Wagoner P, Schauer A (1990) Intermediate wheatgrass as a perennial grain crop. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, Portland, pp 143–145

    Google Scholar 

  • Wills BJ, Douglas GB, McKenzie J, Trainor KD, Foote AG (1998) Thinopyrum intermedium (Host) Barkw and Dewey—a review, and evaluation of intermediate and pubescent wheatgrass for dryland agriculture in New Zealand. Procee N Z Grassl Assoc 60:233–241

    Google Scholar 

  • Xu J, Conner RL (1994) Intravarietal variation in satellites and C-banded chromosomes of Agropyron intermedium ssp. trichophorum cv. Greenleaf. Genome 37:305–310

    Article  CAS  PubMed  Google Scholar 

  • Yang ZJ, Li GR, Jiang HR, Ren ZL (2001) Expression of nucleolus, endosperm storage proteins and disease resistance in an amphiploid between Aegilops tauschii and Secale silvestre. Euphytica 119:317–321

    Article  Google Scholar 

  • Yang ZJ, Li GR, Chang ZJ, Zhou JP, Ren ZL (2006) Characterization of a partial amphiploid between Triticum aestivum cv. Chinese Spring and Thinopyrum intermedium ssp. trichophorum. Euphytica 149:11–17

    Article  CAS  Google Scholar 

  • Zeng J, Cao W, Fedak G, Sun S, McCallum B, Fetch T, Xue A, Zhou Y (2013) Molecular cytological characterization of two novel durum-Thinopyrum intermedium partial amphiploids with resistance to leaf rust, stem rust and Fusarium head blight. Hereditas 150:10–16

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We particularly thank Dr. I. Dundas at University of Adelaide, Australia, for reviewing the manuscript. We thank the National Natural Science Foundation of China (Nos. 31101143, 31171542, 31201203), and Sichuan Wheat Breeding Community for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zujun Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Supplementary material 2 (TIFF 669 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Lang, T., Dai, G. et al. Precise identification of two wheat–Thinopyrum intermedium substitutions reveals the compensation and rearrangement between wheat and Thinopyrum chromosomes. Mol Breeding 35, 1 (2015). https://doi.org/10.1007/s11032-015-0202-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0202-z

Keywords

Navigation