Skip to main content
Log in

X3DOM volume rendering component for web content developers

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

We present a real-time volume rendering component for the Web, which provides a set of illustrative and non-photorealistic styles. Volume data is used in many scientific disciplines, requiring the visualization of the inner data, features for enhancing extracted characteristics or even coloring the volume. The Medical Working Group of X3D published a volume rendering specification. The next step is to build a component that realizes the functionalities defined by the specification. We have designed and built a volume rendering component integrated in the X3DOM framework. This component allows content developers to use the X3D specification. It combines and applies multiple rendering styles to several volume data types, offering a suitable tool for declarative volume rendering on the Web. As we show in the result section, the proposed component can be used in many fields that requires the visualization of multi-dimensional data, such as in medical and scientific fields. Our approach is based on WebGL and X3DOM, providing content developers with an easy and flexible declarative way of sharing and visualizing volumetric content over the Web.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Notes

  1. Available at (http://www9.informatik.uni-erlangen.de/External/vollib/)

References

  1. Behr J, Eschler P, Jung Y, Zöllner M (2009) X3DOM: A DOM-based HTML5/X3D integration model. In: Proceedings of the 14th International Conference on 3D Web Technology, ACM, New York, NY, USA, Web3D ’09, pp 127–135, 10.1145/1559764.1559784

  2. Blinn J F (1977) Models of light reflection for computer synthesized pictures. SIGGRAPH Comput Graph 11(2):192–198. doi:10.1145/965141.563893

    Article  Google Scholar 

  3. Bruckner S, Gröller ME (2007) Style Transfer Functions for Illustrative Volume Rendering. Comput Graph Forum 26(3):715–724. doi:10.1111/j.1467-8659.2007.01095.x

    Article  Google Scholar 

  4. Cabello R (2014) Three.js a JavaScript 3D library. http://www.threejs.org

  5. Catuhe D, Rousseau M, Lagarde P, Rousset D (2014) Babylon.js a 3D engine based on webgl and javascript. http://www.babylonjs.com

  6. Congote J (2012) MEDX3DOM: MEDX3D for X3DOM. In: Proceedings of the 17th International Conference on 3D Web Technology, ACM, NY, USA, Web3D ’12, pp 179–179, 10.1145/2338714.2338746

  7. Congote J, Seguram A, Kabongom L, Morenom A, Posadam J, Ruizm O (2011) Interactive Visualization of Volumetric Data with WebGL in Real-time. In: Proceedings of the 16th International Conference on 3D Web Technology, ACM, NY, USA, Web3D ’11, pp 137–146, 10.1145/2010425.2010449

  8. Congote J, Kabongo L, Moreno A, Segura A, Beristain A, Posada J, Ruiz O (2012) Volume Ray Casting in WebGL. InTech, 10.5772/34878

  9. Crassin C, Neyret F, Lefebvre S, Eisemann E (2009) Gigavoxels: Ray-guided streaming for efficient and detailed voxel rendering. In: Proceedings of the 2009 symposium on Interactive 3D graphics and games. ACM, pp 15–22

  10. Decaudin P (1996) Cartoon Looking Rendering of 3D Scenes. Research Report 2919, INRIA, http://phildec.users.sf.net/Research/RR-2919.php

  11. Ebert D, Rheingans P (2000) Volume illustration: non-photorealistic rendering of volume models. In: Proceedings of the Conference on Visualization ’00, IEEE Computer Society Press, CA, USA, VIS ’00, pp 195–202, http://dl.acm.org/citation.cfm?id=375213.375241

  12. Fraunhofer IGD (2014) X3DOM. http://www.x3dom.org

  13. Fraunhofer IGD (2016) X3DOM Github repository. https://github.com/x3dom/x3dom

  14. Gobbetti E, Marton F, Guitián J A I (2008) A single-pass GPU ray casting framework for interactive out-of-core rendering of massive volumetric datasets. Vis Comput 24(7-9):797–806

    Article  Google Scholar 

  15. Gooch A, Gooch B, Shirley P, Cohen E (1998) A Non-photorealistic Lighting Model for Automatic Technical Illustration. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, ACM, NY, USA, SIGGRAPH ’98, pp 447–452, doi:10.1145/280814.280950 10.1145/280814.280950

  16. Gutenko I, Petkov K, Papadopoulos C, Zhao X, Park JH, Kaufman A, Cha R (2014) Remote volume rendering pipeline for mHealth applications. In: SPIE Medical Imaging, International Society for Optics and Photonics, pp 903,904–903,904

  17. Hähn D, Rannou N, Ahtam B, Grant E, Pienaar R (2012) Neuroimaging in the Browser using the X Toolkit. In: Frontiers Neuroinformation Conference Abstract: 5th INCF Congress of Neuroinformatics. doi:10.3389/conf. fninf, Neuroinformatics

  18. Kajiya JT, Von Herzen BP (1984) Ray Tracing Volume Densities. In: Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, NY, USA, SIGGRAPH ’84, pp 165–174, 10.1145/800031.808594

  19. Kniss J, Kindlmann G, Hansen C (2002) Multidimensional transfer functions for interactive volume rendering. IEEE Trans Vis Comput Graph 8(3):270–285. doi:10.1109/TVCG.2002.1021579

    Article  Google Scholar 

  20. Kruger J, Westermann R (2003) Acceleration techniques for GPUbased volume rendering. In: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), IEEE Computer Society, DC, USA, VIS’03, pp 38, 10.1109/VIS.2003.10001

  21. Levoy M (1988) Display of Surfaces from Volume Data. IEEE Comput Graph Appl 8(3). doi:10.1109/38.511

  22. Li W, Mueller K, Kaufman A (2003) Empty space skipping and occlusion clipping for texture-based volume rendering. In: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), IEEE Computer Society, DC, USA, VIS ’03, pp 42–, 10.1109/VISUAL.2003.1250388

  23. Linsen L, Hagen H, Hamann B, Hege H (2012) Visualization in medicine and life sciences ii: progress and new challenges. Mathematics and Visualization, Springer. http://link.springer.com/book/10.1007%2F978-3-642-21608-4

  24. Lu A, Morris CJ, Ebert DS, Rheingans P, Hansen C (2002) Non-photorealistic volume rendering using stippling techniques. In: Proceedings of the Conference on Visualization ’02, IEEE Computer Society, DC, USA, VIS ’02, pp 211–218, http://dl.acm.org/citation.cfm?id=602099.602131

  25. Lum EB, Ma KL (2002) Hardware-accelerated parallel non-photorealistic volume rendering. In: Proceedings of the 2nd international symposium on Non-photorealistic animation and rendering. ACM, pp 67–ff

  26. Mobeen M, Feng L (2012) High-performance volume rendering on the ubiquitous WebGL platform. In: 2012 IEEE 14th International Conference on High Performance Computing and Communication 2012 IEEE 9th International Conference on Embedded Software and Systems (HPCC-ICESS). doi:10.1109/HPCC.2012.58, pp 381–388

  27. Movania M M, Chiew W M, Lin F (2014) On-site volume rendering with GPU-enabled devices. Wirel Pers Commun 76(4):795–812

    Article  Google Scholar 

  28. Noguera J M, Jiménez J R (2012) Visualization of very large 3D volumes on mobile devices and webGL. WSCG Communication Proceedings pp 105–112

  29. Noguera JM, Jiménez JR, Ogáyar CJ, Segura RJ (2012) Volume rendering strategies on mobile devices. In: GRAPP/IVAPP, pp 447–452

  30. Perandini S, Faccioli N, Zaccarella A, Re T, Mucelli R (2010) The diagnostic contribution of CT volumetric rendering techniques in routine practice. Indian J Radiol Imaging 20(2):63043. doi:10.4103/0971-3026

    Article  Google Scholar 

  31. Pinson C (2014) OSG.JS WebGL framework based on OpenSceneGraph concepts. http://www.osgjs.org

  32. Polys N, Wood A (2012) New platforms for health hypermedia. Issues Inf Syst 13(1):40–50

    Google Scholar 

  33. Polys N, Wood A, Shinpaugh P (2011) Cross-platform presentation of interactive volumetric imagery. Technical Report Departmental Technical Report 1177. Virginia Technology, Advanced Research Computing

  34. Polys N F, Ullrich S, Evestedt D, Wood A D, Aratow M (2013) A fresh look at immersive Volume Rendering: Challenges and capabilities. IEEE VR Workshop on Immersive Volume Rendering, Orlando

    Google Scholar 

  35. Praun E, Hoppe H, Webb M, Finkelstein A (2001) Real-time hatching. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, ACM, NY, USA, SIGGRAPH ’01, pp 581–, 10.1145/383259.383328

  36. Stegmaier S, Strengert M, Klein T, Ertl T (2005) A simple and flexible volume rendering framework for graphics-hardware-based raycasting. In: Proceedings of the Fourth Eurographics / IEEE VGTC Conference on Volume Graphics, Eurographics Association, Aire-la-Ville, Switzerland, VG’05, pp 187–195, 10.2312/VG/VG05/187-195

  37. University of Tübingen WSI/GRIS (2014) Collection of volumetric datasets. http://www.volvis.org

  38. Wallis J, Miller T R, Lerner C, Kleerup E (1989) Three-dimensional display in nuclear medicine. IEEE Trans Med Imaging 8(4):297–230. doi:10.1109/42.41482

    Article  Google Scholar 

  39. Web3DConsortium (2014a) Extensible 3D (X3D) basic example archives. http://www.web3d.org/x3d-resources/content/examples/Basic/VolumeRendering/

  40. Web3DConsortium (2014b) Extensible 3D (X3D) specifications. http://www.web3d.org/x3d/specifications/

  41. Wong P C, Thomas J (2004) Visual analytics. IEEE Comput Graph Appl 24 (5):20–21. doi:10.1109/MCG.2004.39

    Article  Google Scholar 

  42. Yang F, Yang F, Li X, Tian J (2014) Ray feature analysis for volume rendering. Multimedia Tools and Applications pp 1–21, 10.1007/s11042-014-1994-2

  43. Zhou Z, Tao Y, Lin H, Dong F, Clapworthy G (2014) Occlusion-free feature exploration for volume visualization. Multimedia Tools and Applications pp 1–16, 10.1007/s11042-014-2162-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ander Arbelaiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbelaiz, A., Moreno, A., Kabongo, L. et al. X3DOM volume rendering component for web content developers. Multimed Tools Appl 76, 13425–13454 (2017). https://doi.org/10.1007/s11042-016-3743-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3743-1

Keywords

Navigation