Skip to main content

Advertisement

Log in

Interaction between Aβ Peptide and α Synuclein: Molecular Mechanisms in Overlapping Pathology of Alzheimer’s and Parkinson’s in Dementia with Lewy Body Disease

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

An Erratum to this article was published on 12 June 2007

Abstract

Amyloidogenic proteins (Aβ peptide) in Alzheimer’s disease (AD) and alpha-synuclein (α-Syn) in Parkinson’s disease (PD) are typically soluble monomeric precursors, which undergo remarkable conformational changes and culminate in the form of aggregates in diseased condition. Overlap of clinical and neuropathological features of both AD and PD are observed in dementia with Lewy body (DLB) disease, the second most common form of dementia after AD. The identification of a 35-amino acid fragment of α-Syn in the amyloid plaques in DLB brain have raised the possibility that Aβ and α-Syn interact with each other. In this report, the molecular interaction of α-Syn with Aβ40 and/or Aβ42 are investigated using multidimensional NMR spectroscopy. NMR data in the membrane mimic environment indicate specific sites of interaction between membrane-bound α-Syn with Aβ peptide and vice versa. These Aβ–α-Syn interactions are demonstrated by reduced amide peak intensity or change in chemical shift of amide proton of the interacting proteins. Based on NMR results, the plausible molecular mechanism of overlapping pathocascade of AD and PD in DLB due to interactions between α-Syn and Aβ is described. To the best of our knowledge, it is the first report using multidimensional NMR spectroscopy that elucidates molecular interactions between Aβ and α-Syn which may lead to onset of DLB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    Article  PubMed  CAS  Google Scholar 

  2. Goedert M (2001) Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2:492–501

    Article  PubMed  CAS  Google Scholar 

  3. George JM (2002) The synucleins. Genome Biol 3:REVIEWS3002 (abstract)

    PubMed  Google Scholar 

  4. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    Article  PubMed  CAS  Google Scholar 

  5. Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18:106–108

    Article  PubMed  CAS  Google Scholar 

  6. Uversky VN, Li J, Souillac P, Millett IS, Doniach S, Jakes R, Goedert M, Fink AL (2002) Biophysical properties of the synucleins and their propensities to fibrillate—inhibition of alpha-synuclein assembly by beta- and gamma-synucleins. J Biol Chem 277:11970–11978

    Article  PubMed  CAS  Google Scholar 

  7. Eliezer D, Kutluay E, Bussell R, Browne G (2001) Conformational properties of alpha-synuclein in its free and lipid-associated states. J Mol Biol 307:1061–1073

    Article  PubMed  CAS  Google Scholar 

  8. Shults CW (2006) Lewy bodies. Proc Natl Acad Sci USA 103:1661–1668

    Article  PubMed  CAS  Google Scholar 

  9. Chandra S, Chen XC, Rizo J, Jahn R, Sudhof TC (2003) A broken alpha-helix in folded alpha-synuclein. J Biol Chem 278:15313–15318

    Article  PubMed  CAS  Google Scholar 

  10. Lee HJ, Choi C, Lee SJ (2002) Membrane-bound alpha-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. J Biol Chem 277:671–678

    Article  PubMed  CAS  Google Scholar 

  11. Iversen LL, Mortishiresmith RJ, Pollack SJ, Shearman MS (1995) The toxicity in-vitro of beta-amyloid protein. Biochem J 311:1–16

    PubMed  CAS  Google Scholar 

  12. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249

    Article  PubMed  CAS  Google Scholar 

  13. Selkoe DJ (1994) Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimer’s disease. Annu Rev Cell Biol 10:373–403

    Article  PubMed  CAS  Google Scholar 

  14. Mandal PK, Pettegrew JW (2004) Alzheimer’s disease: soluble oligomeric Aβ(1.40) peptide in membrane mimic environment from solution NMR and circular dichroism studies. Neurochem Res 29:2255–2260

    Google Scholar 

  15. Coles M, Bicknell W, Watson AA, Fairlie DP, Craik DJ (1998) Solution structure of amyloid beta-peptide(1–40) in a water-micelle environment. Is the membrane-spanning domain where we think it is? Biochemistry 37:11064–11077

    CAS  Google Scholar 

  16. Shao HY, Jao SC, Ma K, Zagorski MG (1999) Solution structures of micelle-bound amyloid beta-(1–40) and beta-(1–42) peptides of Alzheimer’s disease. J Mol Biol 285:755–773

    Article  PubMed  CAS  Google Scholar 

  17. Mandal PK, Pettegrew JW (2004) Alzheimer’s disease: NMR studies of asialo (GM1) and trisialo (GT1b) ganglioside interactions with A beta(1–40) peptide in a membrane mimic environment. Neurochem Res 29:447–453

    Article  PubMed  CAS  Google Scholar 

  18. Pettegrew JW, Mandal PK, Panchalingam K, McClure RJ (2005) Catalytic breakdown of glycerophosphocholine by a peptide. Society for Neuroscience, Washington

  19. Mandal PK, Pettegrew JW (2006) Evidence of catalytic type activity of Abeta peptide (manuscript under preparation)

  20. Selkoe DJ (1999) Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 399:A23–A31

    Article  PubMed  CAS  Google Scholar 

  21. Jarrett JT, Berger EP, Lansbury PT Jr (1993) The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32:4693–4697

    Article  PubMed  CAS  Google Scholar 

  22. Dickson DW (1997) The pathogenesis of senile plaques. J Neuropathol Exp Neurol 56:321–339

    PubMed  CAS  Google Scholar 

  23. McKeith IG, Galasko D, Kosaka K, Perry EK, Dickson DW, Hansen LA, Salmon DP, Lowe J, Mirra SS, Byrne EJ, Lennox G, Quinn NP, Edwardson JA, Ince PG, Bergeron C, Burns A, Miller BL, Lovestone S, Collerton D, Jansen EN, Ballard C, de Vos RA, Wilcock GK, Jellinger KA, Perry RH (1996) Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 47:1113–1124

    PubMed  CAS  Google Scholar 

  24. McKeith IG, Burn DJ, Ballard CG, Collerton D, Jaros E, Morris CM, McLaren A, Perry EK, Perry R, Piggott MA, O’Brien JT (2003) Dementia with Lewy bodies. Semin Clin Neuropsychiatry 8:46–57

    Article  PubMed  Google Scholar 

  25. Yokota O, Terada S, Ishizu H, Ujike H, Ishihara T, Nakashima H, Yasuda M, Kitamura Y, Ueda K, Checler F, Kuroda S (2002) NACP/alpha-synuclein, NAC, and beta-amyloid pathology of familial Alzheimer’s disease with the E184D presenilin-1 mutation: a clinicopathological study of two autopsy cases. Acta Neuropathol 104:637–648

    PubMed  CAS  Google Scholar 

  26. Liu CW, Giasson BI, Lewis KA, Lee VM, DeMartino GN, Thomas PJ (2005) A precipitating role for truncated alpha-synuclein and the proteasome in alpha-synuclein aggregation—implications for pathogenesis of Parkinson disease. J Biol Chem 280:22670–22678

    Article  PubMed  CAS  Google Scholar 

  27. Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287:1265–1269

    Article  PubMed  CAS  Google Scholar 

  28. Masliah E, Rockenstein E, Veinbergs I, Sagara Y, Mallory M, Hashimoto M, Mucke L (2001) Beta-amyloid peptides enhance alpha-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer’s disease and Parkinson’s disease. Proc Natl Acad Sci USA 98:12245–12250

    Article  PubMed  CAS  Google Scholar 

  29. Marion D, Wuthrich K (1983) Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H–1H spin–spin coupling constants in proteins. Biochem Biophys Res Commun 113:967–974

    Article  PubMed  CAS  Google Scholar 

  30. Piotto M, Saudek V, Sklenar V (1992) Gradient-tailored excitation for single-quantum NMR-spectroscopy of aqueous-solutions. J Biomol NMR 2:661–665

    Article  PubMed  CAS  Google Scholar 

  31. Mandal PK, Majumdar A (2004) A comprehensive discussion of HSQC and HMQC pulse sequences. Concepts Magn Reson A 20A:1–23

    Article  CAS  Google Scholar 

  32. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  PubMed  CAS  Google Scholar 

  33. Garrett DS, Powers R, Gronenborn AM, Clore GM (1991) A common sense approach to peak picking two-, three- and four-dimensional spectra using automatic computer analysis of contour diagrams. J Magn Reson 95:214–220

    CAS  Google Scholar 

  34. Goddard TD, Kneller DG (1994) SPARKY 3. University of California, San Francisco

  35. Hansen L, Salmon D, Galasko D, Masliah E, Katzman R, DeTeresa R, Thal L, Pay MM, Hofstetter R, Klauber M et al (1990) The Lewy body variant of Alzheimer’s disease: a clinical and pathologic entity. Neurology 40:1–8

    PubMed  CAS  Google Scholar 

  36. Galasko D, Hansen LA, Katzman R, Wiederholt W, Masliah E, Terry R, Hill LR, Lessin P, Thal LJ (1994) Clinical–neuropathological correlations in Alzheimer’s disease and related dementias. Arch Neurol 51:888–895

    PubMed  CAS  Google Scholar 

  37. Arima K, Ueda K, Sunohara N, Hirai S, Izumiyama Y, Tonozuka-Uehara H, Kawai M (1998) Immunoelectron-microscopic demonstration of NACP/alpha-synuclein-epitopes on the filamentous component of Lewy bodies in Parkinson’s disease and in dementia with Lewy bodies. Brain Res 808:93–100

    Article  PubMed  CAS  Google Scholar 

  38. Kosaka K, Yoshimura M, Ikeda K, Budka H (1984) Diffuse type of Lewy body disease: progressive dementia with abundant cortical Lewy bodies and senile changes of varying degree—a new disease? Clin Neuropathol 3:185–192

    PubMed  CAS  Google Scholar 

  39. Gibb WR, Esiri MM, Lees AJ (1987) Clinical and pathological features of diffuse cortical Lewy body disease (Lewy body dementia). Brain 110(Pt 5):1131–1153

    Google Scholar 

  40. Gibb WR, Luthert PJ, Janota I, Lantos PL (1989) Cortical Lewy body dementia: clinical features and classification. J Neurol Neurosurg Psychiatry 52:185–192

    Article  PubMed  CAS  Google Scholar 

  41. Perry RH, Irving D, Blessed G, Fairbairn A, Perry EK (1990) Senile dementia of Lewy body type. A clinically and neuropathologically distinct form of Lewy body dementia in the elderly. J Neurol Sci 95:119–139

    CAS  Google Scholar 

  42. Hashimoto M, Rockenstein E, Crews L, Masliah E (2003) Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases. Neuromolecular Med 4:21–35

    Article  PubMed  CAS  Google Scholar 

  43. Jensen PH, Nielsen MS, Jakes R, Dotti G, Goedert M (1998) Binding of alpha-synuclein to brain vesicles is abolished by familial Parkinson’s disease mutation. J Biol Chem 273:26292–26294

    Article  PubMed  CAS  Google Scholar 

  44. Iwai A, Yoshimoto M, Masliah E, Saitoh T (1995) Non-A beta component of Alzheimer’s disease amyloid (NAC) is amyloidogenic. Biochemistry 34:10139–10145

    Article  PubMed  CAS  Google Scholar 

  45. Sidhu A, Wersinger C, Vernier P (2004) Alpha-synuclein regulation of the dopaminergic transporter: a possible role in the pathogenesis of Parkinson’s disease. FEBS Lett 565:1–5

    Article  PubMed  CAS  Google Scholar 

  46. Bennett MC, Bishop JF, Leng Y, Chock PB, Chase TN, Mouradian MM (1999) Degradation of alpha-synuclein by proteasome. J Biol Chem 274:33855–33858

    Article  PubMed  CAS  Google Scholar 

  47. Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736

    Article  PubMed  CAS  Google Scholar 

  48. Narayanan V, Scarlata S (2001) Membrane binding and self-association of alpha-synucleins. Biochemistry 40:9927–9934

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Pravat K Mandal thanks to Dr David J. Kupfer, MD (Chairman, Psychiatry) for encouragement and support. Financial support in the form of research grants from American Parkinson Disease Association and Alzheimer Disease Research Center, University of Pittsburgh and American Health Assistance Foundation are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravat K. Mandal.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11064-007-9391-0

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, P.K., Pettegrew, J.W., Masliah, E. et al. Interaction between Aβ Peptide and α Synuclein: Molecular Mechanisms in Overlapping Pathology of Alzheimer’s and Parkinson’s in Dementia with Lewy Body Disease. Neurochem Res 31, 1153–1162 (2006). https://doi.org/10.1007/s11064-006-9140-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9140-9

Keywords

Navigation