Skip to main content

Advertisement

Log in

Calpain-induced Proteolysis After Transient Global Cerebral Ischemia and Ischemic Tolerance in a Rat Model

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The activation of the [Ca2+]-dependent cysteine protease calpain plays an important role in ischemic injury. Here, the levels of two calpain-specific substrates, p35 protein and eukaryotic initiation factor 4G (eIF4G), as well as its physiological regulator calpastatin, were investigated in a rat model of transient global cerebral ischemia with or without ischemic tolerance (IT). Extracts of the cerebral cortex, whole hippocampus and hippocampal subregions after 30 min of ischemia and different reperfusion times (30 min and 4 h) were used. In rats without IT, the p35 levels slightly decreased after ischemia or reperfusion, whereas the levels of p25 (the truncated form of p35) were much higher than those in sham control rats after ischemia and remained elevated during reperfusion. The eIF4G levels deeply diminished after reperfusion and the decrease was significantly greater in CA1 and the rest of the hippocampus than in the cortex. By contrast, the calpastatin levels did not significantly decrease during ischemia or early reperfusion, but were upregulated after 4 h of reperfusion in the cortex. Although IT did not promote significant changes in p35 and p25 levels, it induced a slight increase in calpastatin and eIF4G levels in the hippocampal subregions after 4 h of reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Goll DE, Thompson VF, Li H et al (2003) The calpain system. Physiol Rev 83:731–801

    PubMed  CAS  Google Scholar 

  2. Kristian T, Siesjo BK (1997) Changes in ionic fluxes during cerebral ischaemia. Int Rev Neurobiol 40:27–45

    PubMed  CAS  Google Scholar 

  3. Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    PubMed  CAS  Google Scholar 

  4. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565

    Article  PubMed  CAS  Google Scholar 

  5. Rami A (2003) Ischemic neuronal death in the rat hippocampus: the calpain–calpastatin–caspase hypothesis. Neurobiol Dis 13:75–88

    Article  PubMed  CAS  Google Scholar 

  6. Bartus TR, Dean RL, Mennerick S et al (1998) Temporal ordering of pathogenic events following transient global ischemia. Brain Res 790:1–13

    Article  PubMed  CAS  Google Scholar 

  7. Markgraf CG, Velayo NL, Johnson MP et al (1998) Six-hour window of opportunity for calpain inhibition in focal cerebral ischemia in rats. Stroke 29:152–158

    PubMed  CAS  Google Scholar 

  8. Ray SK, Banik NL (2003) Calpain and its involvement in the pathophysiology of CNS injuries and diseases: therapeutic potential of calpain inhibitors for prevention of neurodegeneration. Curr Drug Targets CNS Neurol Disord 2:173–189

    Article  PubMed  CAS  Google Scholar 

  9. Das A, Garner DP, Del Re AM et al (2006) Calpeptin provides functional neuroprotection to rat retinal ganglion cells following Ca(2+) influx. Brain Res 1084:146–157

    Article  PubMed  CAS  Google Scholar 

  10. Carragher NO (2006) Calpain inhibition: a therapeutic strategy targeting multiple disease states. Curr Pharm Des 12:615–638

    Article  PubMed  CAS  Google Scholar 

  11. Wingrave JM, Sribnick EA, Wilford GG et al (2004) Higher calpastatin levels correlate with resistance to calpain-mediated proteolysis and neuronal apoptosis in juvenile rats after spinal cord injury. J Neurotraum 21:1240–1254

    Article  Google Scholar 

  12. Bano D, Young KW, Guerin CJ et al (2005) Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120:275–285

    Article  PubMed  CAS  Google Scholar 

  13. Higuchi M, Tomioka M, Takano J et al (2005) Distinct mechanistic roles of calpain and caspase activation in neurodegeneration as revealed in mice overexpressing their specific inhibitors. J Biol Chem 280:15229–15237

    Article  PubMed  CAS  Google Scholar 

  14. Dnyanmote AV, Sawant SP, Lock EA et al (2006) Calpastatin overexpression prevents progression of S-1,2-dichlorovinyl-l-cysteine (DCVC)-initiated acute renal injury and renal failure (ARF) in diabetes. Toxicol Appl Pharmacol [Epub ahead of print] PMID: 16546232

  15. Kesavapany S, Amin N, Zheng YL et al (2004) p35/cyclin-dependent kinase 5 phosphorylation of ras guanine nucleotide releasing factor 2 (RasGRF2) mediates Rac-dependent extracellular signal-regulated kinase 1/2 activity, altering RasGRF2 and microtubule-associated protein 1b distribution in neurons. J Neurosci 24:4421–4431

    Article  PubMed  CAS  Google Scholar 

  16. Hahn CM, Kleinholz H, Koester MP et al (2005) Role of cyclin-dependent kinase 5 and its activator P35 in local axon and growth cone stabilization. Neuroscience 134:449–465

    Article  PubMed  CAS  Google Scholar 

  17. Tsai L-H, Delalle I, Caviness VS Jr et al (1994) p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371:419–426

    Article  PubMed  CAS  Google Scholar 

  18. Patrick GN, Zukerberg L, Nikolic M et al (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402:615–622

    Article  PubMed  CAS  Google Scholar 

  19. Lee M-S, Kwon YT, Li M et al (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405:360–368

    Article  PubMed  CAS  Google Scholar 

  20. Wang J, Liu S, Fu Y et al (2003) Cdk5 activation induces hippocampal CA1 cell death by directly phosphorylating NMDA receptors. Nat Neurosci 6:1039–1047

    Article  PubMed  CAS  Google Scholar 

  21. Cruz JC, Tsai LH (2004) A Jekyll and Hyde kinase: roles for cdk5 in brain development and disease. Curr Opin Neurobiol 14:390–395

    Article  PubMed  CAS  Google Scholar 

  22. Zheng YL, Kesavapany S, Gravell M et al (2005) A Cdk5 inhibitory peptide reduces tau hyperphosphorylation and apoptosis in neurons. EMBO J 24:209–220

    Article  PubMed  CAS  Google Scholar 

  23. Jamsa A, Backstrom A, Gustafsson E et al (2006) Glutamate treatment and p25 transfection increase Cdk5 mediated tau phosphorylation in SH-SY5Y cells. Biochem Biophys Res Commun 345:324–331

    Article  PubMed  CAS  Google Scholar 

  24. Weishaupt JH, Kussmaul L, Grötsch P et al (2003) Inhibition of CDK5 is protective in necrotic and apoptotic paradigms of neuronal cell death and prevents mitochondrial dysfunction. Mol Cell Neurosci 24:489–502

    Article  PubMed  CAS  Google Scholar 

  25. Alvira D, Tajes M, Verdaguer E et al (2006) Inhibition of the cdk5/p25 fragment formation may explain the antiapoptotic effects of melatonin in an experimental model of Parkinson’s disease. J Pineal Res 40:251–258

    Article  PubMed  CAS  Google Scholar 

  26. Kitagawa K, Matsumoto M, Tagaya M et al (1990) “Ischemic tolerance” phenomenon found in the brain. Brain Res 528:21–24

    Article  PubMed  CAS  Google Scholar 

  27. Kirino T (2002) Ischemic tolerance. J Cereb Blood Flow Metab 22:1283–1296

    Article  PubMed  Google Scholar 

  28. Schaller B, Graf R (2002) Cerebral ischemic preconditioning. An experimental phenomenon or a clinical important entity of stroke prevention. J Neurol 249:1503–1511

    Article  PubMed  CAS  Google Scholar 

  29. Gidday JM (2006) Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 7:437–448

    Article  PubMed  CAS  Google Scholar 

  30. Sharp FR, Aigang L, Yang T et al (2000) Multiple molecular penumbras after focal cerebral ischemia. J Cereb Blood Flow Metab 20:1011–1032.

    Article  PubMed  CAS  Google Scholar 

  31. Burda J, Hrehorovská M, Garcia L et al (2003) Role of protein synthesis in the ischemic tolerance acquisition induced by transient forebrain ischemia in the rat. Neurochem Res 28:1213–1219

    Article  PubMed  CAS  Google Scholar 

  32. Barone FC, White RF, Spera PA et al (1998) Ischemic preconditioning and brain tolerance. Temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke 29:1937–1951

    PubMed  CAS  Google Scholar 

  33. Nishio S, Chen ZF, Yunoki M et al (1999) Hypothermia-induced ischemic tolerance. Ann NY Acad Sci 890:26–41

    Article  PubMed  CAS  Google Scholar 

  34. Neumar RW, DeGracia DJ, Konkoly LL et al (1998) Calpain mediates eukaryotic initiation factor 4G degradation during global brain ischemia. J Cereb Blood Flow Metab 18:876–881

    Article  PubMed  CAS  Google Scholar 

  35. Martín de la Vega C, Burda J, Nemethova M et al (2001) Possible mechanisms involved in the down-regulation of translation during transient global ischaemia in the rat brain. Biochem J 357:819–826

    Article  Google Scholar 

  36. Mengesdorf T, Althausen S, Oberndorfer I et al (2001) Response of neurons to an irreversible inhibition of endoplasmic reticulum Ca2+-ATPase: relationship between global protein synthesis and expression and translation of individual genes. Biochem J 356:805–812

    Article  PubMed  CAS  Google Scholar 

  37. García L, Burda J, Hrehorovská M et al (2004) Ischaemic preconditioning in the rat brain: effect on the activity of several initiation factors, Akt and extracellular signal-regulated protein kinase phosphorylation, and GRP78 and GADD34 expression. J Neurochem 88:136–147

    Article  PubMed  Google Scholar 

  38. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  39. Hou ST, MacManus JP (2002) Molecular mechanisms of cerebral ischemia-induced neuronal death. Int Rev Cytol 221:93–148

    Article  PubMed  CAS  Google Scholar 

  40. Brostrom MA, Brostrom CO (2003) Calcium dynamics and endoplasmic reticular function in the regulation of protein synthesis: implications for cell growth and adaptability. Cell Calcium 34:345–363

    Article  PubMed  CAS  Google Scholar 

  41. Zhang C, Siman R, Xu YA et al (2002) Comparison of calpain and caspase activities in the adult rat brain after transient forebrain ischemia. Neurobiol Dis 10:289–305

    Article  PubMed  CAS  Google Scholar 

  42. Siesjo BK, Hu B, Kristian T (1999) Is the cell death pathway triggered by the mitochondrion or the endoplasmic reticulum? J Cereb Blood Flow Metab 19:19–26

    Article  PubMed  CAS  Google Scholar 

  43. Shelton SB, Johnson GVW (2004) Cyclin-dependent kinase-5 in neurodegeneration. J Neurochem 88:1313–1326

    Article  PubMed  CAS  Google Scholar 

  44. Fischer A, Sananbenesi F, Pang PT et al (2005) Opposing roles of transient and prolonged expression of p25 in synaptic plasticity and hippocampus-dependent memory. Neuron 48:825–838

    Article  PubMed  CAS  Google Scholar 

  45. Nevins TA, Harder ZM, Korneluk RG et al (2003) Distinct regulation of internal ribosome entry site-mediated translation following cellular stress is mediated by apoptotic fragments of eIF4G translation initiation factor family members eIF4GI and p97/DAP5/NAT1. J Biol Chem 278:3572–3579

    Article  PubMed  CAS  Google Scholar 

  46. Hossmann KA (1993) Disturbances of cerebral protein synthesis and ischemic cell death. Prog Brain Res 96:161–177

    Article  PubMed  CAS  Google Scholar 

  47. Furuta Y, Uehara T, Nomura Y (2003) Correlation between delayed neuronal cell death and selective decrease in phosphatidylinositol 4-kinase expression in the CA1 subfield of the hippocampus after transient forebrain ischemia. J Cereb Blood Flow Metab 23:962–971

    Article  PubMed  CAS  Google Scholar 

  48. MacManus JP, Graber T, Luebbert C et al (2004) Translation-state analysis of gene expression in mouse brain after focal ischemia. J Cereb Blood Flow Metab 24:657–667

    Article  PubMed  CAS  Google Scholar 

  49. Schmidt-Kastner R, Zhang B, Belayev L et al (2002) DNA microarray analysis of cortical gene expression during early recirculation after focal brain ischemia in rat. Brain Res Mol Brain Res 108:81–93

    Article  PubMed  CAS  Google Scholar 

  50. Jin K, Mao XO, Eshoo MW et al (2001) Microarray analysis of hippocampal gene expression in global cerebral ischemia. Ann Neurol 50:93–103

    Article  PubMed  CAS  Google Scholar 

  51. Nakagomi T, Kirino T, Kanemitsu H et al (1993) Early recovery of protein synthesis following ischemia in hippocampal neurons with induced tolerance in the gerbil. Acta Neuropathol 86:10–15

    Article  PubMed  CAS  Google Scholar 

  52. Kato H, Kogure K, Nakata N et al (1995) Facilitated recovery from postischemic supression of protein synthesis in the gerbil brain with ischemic tolerance. Brain Res Bull 36:205–208

    Article  PubMed  CAS  Google Scholar 

  53. Burda J, Martin ME, García A et al (1994) Phosphorylation of the a subunit of initiation factor 2 correlates with the inhibition of translation following transient cerebral ischaemia in the rat. Biochem J 302:335–338

    PubMed  CAS  Google Scholar 

  54. Martín de la Vega C, Burda J, Salinas M (2001) Ischemia-induced inhibition of the initiation factor 2a phosphatase activity in the rat brain. Neuroreport 12:1021–1025

    Article  Google Scholar 

  55. Dirnagl U, Simon RP, Hallenbeck JM (2003) Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 26:248–254

    Article  PubMed  CAS  Google Scholar 

  56. Abe H, Nowak TS Jr (2004) Induced hippocampal neuron protection in an optimized gerbil ischemia model: insult thresholds for tolerance induction and altered gene expression defined by ischemic depolarization. J Cereb Blood Flow Metab 24:84–97

    Article  PubMed  CAS  Google Scholar 

  57. Kato K, Shimazaki K, Kamiya T et al (2005) Differential effects of sublethal ischemia and chemical preconditioning with 3-nitropropionic acid on protein expression in gerbil hippocampus. Life Sci 77:2867–2878

    Article  PubMed  CAS  Google Scholar 

  58. Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451

    Article  PubMed  CAS  Google Scholar 

  59. Averna M, Stifanese R, De Tullio R et al (2006) Interaction between catalytically inactive calpain and calpastatin. Evidence for its occurrence in stimulated cells. FEBS J 273:1660–1668

    Article  PubMed  CAS  Google Scholar 

  60. Blomgren K (1999) Calpastatin is upregulated and acts as a suicide substrate to calpains in neonatal rat hypoxia-ischemia. Ann NY Acad Sci 890:270–271

    Article  PubMed  CAS  Google Scholar 

  61. Saido TC, Kawashima S, Tani E et al (1997) Up- and down-regulation of calpain inhibitor polypeptide, calpastatin, in postischemic hippocampus. Neurosci Lett 227:75–78

    Article  PubMed  CAS  Google Scholar 

  62. Dever TE (2002) Gene-specific regulation by general translation factors. Cell 108:545–556

    Article  PubMed  CAS  Google Scholar 

  63. Gebauer F, Hentze MW (2004) Molecular mechanisms of translational control. Nat Rev 5:827–835

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants SPAIN-02/0304 and 05/0312 from the Ministerio de Sanidad y Consumo (FIS), and grants SK-VEGA 2/3219/23 and APVT 51-0219-04 from the Slovak Academy of Sciences. I. Ayuso, L. García-Bonilla and D. Piñeiro gratefully acknowledge fellowships from the FIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Salinas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Bonilla, L., Burda, J., Piñeiro, D. et al. Calpain-induced Proteolysis After Transient Global Cerebral Ischemia and Ischemic Tolerance in a Rat Model. Neurochem Res 31, 1433–1441 (2006). https://doi.org/10.1007/s11064-006-9195-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9195-7

Keywords

Navigation