Skip to main content
Log in

Biological Function of the Cellular Lipid BMP—BMP as a Key Activator for Cholesterol Sorting and Membrane Digestion

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Bis(monoacylglycero)phosphate (BMP) is one of the most intriguing classes of lipids discovered to date. Its biosynthetic pathway is still not fully known, even though studies point to cardiolipin and PG as sources. BMP has an unusual stereoconfiguration which is responsible for its slow catabolism. It is localized exclusively in the inner membranes of late endosomes, and mostly, lysosomes. BMP is negatively charged at the acidic pH of lysosomes, and these charges are central to its role in the degradation of lipids and membranes in the lysosome. In effect, these negative charges facilitate the adhesion of the soluble positively charged hydrolases and activator proteins, thus allowing them to degrade the lipids at the interface of the inner membranes of the lysosome. In this review, we will summarize the different properties of BMP and showcase its importance in the catabolism of lipids and membranes in the lysosome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BMP:

Bis(monoacylglycero)phosphate

PG:

Phosphatidylglycerol

References

  1. Rouser G, Simon G, Kritchevsky G (1969) Species variations in phospholipid class distribution of organs. I. Kidney, liver and spleen. Lipids 4:599–606

    Article  PubMed  CAS  Google Scholar 

  2. Simon G, Rouser G (1969) Species variations in phospholipid class distribution of organs. II. Heart and skeletal muscle. Lipids 4:607–614

    Article  PubMed  CAS  Google Scholar 

  3. Body DR, Gray GM (1967) The isolation and characterisation of phosphatidylglycerol and a structural isomer from pig lung. Chem Phys Lipids 1:254–263

    Article  CAS  Google Scholar 

  4. Brotherus J, Renkonen O (1974) Isolation and characterisation of bis-phosphatidic acid and its partially deacylated derivatives from cultured BHK-cells. Chem Phys Lipids 13:11–20

    Article  PubMed  CAS  Google Scholar 

  5. Rouser G, Kritchevsky G, Knudson AG Jr et al (1968) Accumulation of a glycerolphospholipid in classical Niemann-Pick disease. Lipids 3:287–290

    Article  PubMed  CAS  Google Scholar 

  6. Yamamoto A, Adachi S, Ishikawa K et al (1971) Studies on drug-induced lipidosis. 3. Lipid composition of the liver and some other tissues in clinical cases of “Niemann-Pick-like syndrome” induced by 4, 4′-diethylaminoethoxyhexestrol. J Biochem 70:775–784

    PubMed  CAS  Google Scholar 

  7. Fahy E, Subramaniam S, Brown HA et al (2005) A comprehensive classification system for lipids. J Lipid Res 46:839–861

    Article  PubMed  CAS  Google Scholar 

  8. Matsuzawa Y, Hostetler KY (1979) Degradation of bis(monoacylglycero)phosphate by an acid phosphodiesterase in rat liver lysosomes. J Biol Chem 254:5997–6001

    PubMed  CAS  Google Scholar 

  9. Brotherus J, Renkonen O, Fischer W et al (1974) Novel stereoconfiguration in lyso-bis-phosphatidic acid of cultured BHK-cells. Chem Phys Lipids 13:178–182

    Article  PubMed  CAS  Google Scholar 

  10. Joutti A, Brotherus J, Renkonen O et al (1976) The stereochemical configuration of lysobisphosphatidic acid from rat liver, rabbit lung and pig lung. Biochim Biophys Acta 450:206–209

    PubMed  CAS  Google Scholar 

  11. Joutti A, Renkonen O (1979) The stereoconfiguration of bis(monoacylglycero)phosphate synthesized in vitro in lysosomes of rat liver: comparison with the natural lipid. J Lipid Res 20:840–847

    PubMed  CAS  Google Scholar 

  12. Joutti A (1979) The stereoconfiguration of newly formed molecules of bis(monoacylglycero)phosphate in BHK cells. Biochim Biophys Acta 575:10–15

    PubMed  CAS  Google Scholar 

  13. Amidon B, Schmitt JD, Thuren T et al (1995) Biosynthetic conversion of phosphatidylglycerol to sn-1:sn-1′ bis(monoacylglycerol) phosphate in a macrophage-like cell line. Biochemistry 34:5554–5560

    Article  PubMed  CAS  Google Scholar 

  14. Amidon B, Brown A, Waite M (1996) Transacylase and phospholipases in the synthesis of bis(monoacylglycero)phosphate. Biochemistry 35:13995–14002

    Article  PubMed  CAS  Google Scholar 

  15. Chevallier J, Sakai N, Robert F et al (2000) Rapid access to synthetic lysobisphosphatidic acids using P(III) chemistry. Org Lett 2:1859–1861

    Article  PubMed  CAS  Google Scholar 

  16. Matsuo H, Chevallier J, Mayran N et al (2004) Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science 303:531–534

    Article  PubMed  CAS  Google Scholar 

  17. Mason RJ, Stossel TP, Vaughan M (1972) Lipids of alveolar macrophages, polymorphonuclear leukocytes, and their phagocytic vesicles. J Clin Invest 51:2399–2407

    Article  PubMed  CAS  Google Scholar 

  18. Cochran FR, Connor JR, Roddick VL et al (1985) Lyso(bis)phosphatidic acid: a novel source of arachidonic acid for oxidative metabolism by rabbit alveolar macrophages. Biochem Biophys Res Commun 130:800–806

    Article  PubMed  CAS  Google Scholar 

  19. Wherrett JR, Huterer S (1973) Bis-(monoacylglyceryl)-phosphate of rat and human liver: fatty acid composition and NMR spectroscopy. Lipids 8:531–533

    Article  PubMed  CAS  Google Scholar 

  20. Besson N, Hullin-Matsuda F, Makino A et al (2006) Selective incorporation of docosahexaenoic acid into lysobisphosphatidic acid in cultured THP-1 macrophages. Lipids 41:189–196

    Article  PubMed  CAS  Google Scholar 

  21. Bouvier J, Zemski Berry KA, Hullin-Matsuda F et al (2009) Selective decrease of bis(monoacylglycero)phosphate content in macrophages by high supplementation with docosahexaenoic acid. J Lipid Res 50:243–255

    Article  PubMed  CAS  Google Scholar 

  22. Luquain C, Dolmazon R, Enderlin JM et al (2000) Bis(monoacylglycerol) phosphate in rat uterine stromal cells: structural characterization and specific esterification of docosahexaenoic acid. Biochem J 351(Pt 3):795–804

    Article  PubMed  CAS  Google Scholar 

  23. Kobayashi T, Beuchat MH, Chevallier J et al (2002) Separation and characterization of late endosomal membrane domains. J Biol Chem 277:32157–32164

    Article  PubMed  CAS  Google Scholar 

  24. Burger KN (2000) Greasing membrane fusion and fission machineries. Traffic 1:605–613

    Article  PubMed  CAS  Google Scholar 

  25. Dikic I (2004) ALIX-ing phospholipids with endosome biogenesis. Bioessays 26:604–607

    Article  PubMed  CAS  Google Scholar 

  26. Hurley JH (2008) ESCRT complexes and the biogenesis of multivesicular bodies. Curr Opin Cell Biol 20:4–11

    Article  PubMed  CAS  Google Scholar 

  27. Saksena S, Sun J, Chu T et al (2007) ESCRTing proteins in the endocytic pathway. Trends Biochem Sci 32:561–573

    Article  PubMed  CAS  Google Scholar 

  28. Chevallier J, Chamoun Z, Jiang G et al (2008) Lysobisphosphatidic acid controls endosomal cholesterol levels. J Biol Chem 283:27871–27880

    Article  PubMed  CAS  Google Scholar 

  29. Piper RC, Luzio JP (2001) Late endosomes: sorting and partitioning in multivesicular bodies. Traffic 2:612–621

    Article  PubMed  CAS  Google Scholar 

  30. Schulze H, Kolter T, Sandhoff K (2009) Principles of lysosomal membrane degradation: cellular topology and biochemistry of lysosomal lipid degradation. Biochim Biophys Acta 1793:674–683

    Article  PubMed  CAS  Google Scholar 

  31. Hullin-Matsuda F, Kawasaki K, Delton-Vandenbroucke I et al (2007) De novo biosynthesis of the late endosome lipid, bis(monoacylglycero)phosphate. J Lipid Res 48:1997–2008

    Article  PubMed  CAS  Google Scholar 

  32. Cochran FR, Roddick VL, Connor JR et al (1987) Regulation of arachidonic acid metabolism in resident and BCG-activated alveolar macrophages: role of lyso(bis)phosphatidic acid. J Immunol 138:1877–1883

    PubMed  CAS  Google Scholar 

  33. Ito M, Tchoua U, Okamoto M et al (2002) Purification and properties of a phospholipase A2/lipase preferring phosphatidic acid, bis(monoacylglycerol) phosphate, and monoacylglycerol from rat testis. J Biol Chem 277:43674–43681

    Article  PubMed  CAS  Google Scholar 

  34. Abe A, Shayman JA (2009) The role of negatively charged lipids in lysosomal phospholipase A2 function. J Lipid Res 50:2027–2035

    Article  PubMed  CAS  Google Scholar 

  35. Poorthuis BJ, Hostetler KY (1978) Conversion of diphosphatidylglycerol to bis(monoacylglyceryl)phosphate by lysosomes. J Lipid Res 19:309–315

    PubMed  CAS  Google Scholar 

  36. Brotherus J, Renkonen O (1977) Subcellular distributions of lipids in cultured BHK cells: evidence for the enrichment of lysobisphosphatidic acid and neutral lipids in lysosomes. J Lipid Res 18:191–202

    PubMed  CAS  Google Scholar 

  37. Poorthuis BJ, Hostetler KY (1976) Studies on the subcellular localization and properties of bis(monoacylglyceryl)phosphate biosynthesis in rat liver. J Biol Chem 251:4596–4602

    PubMed  CAS  Google Scholar 

  38. Mobius W, van Donselaar E, Ohno-Iwashita Y et al (2003) Recycling compartments and the internal vesicles of multivesicular bodies harbor most of the cholesterol found in the endocytic pathway. Traffic 4:222–231

    Article  PubMed  CAS  Google Scholar 

  39. Wilkening G, Linke T, Uhlhorn-Dierks G et al (2000) Degradation of membrane-bound ganglioside GM1. Stimulation by bis(monoacylglycero)phosphate and the activator proteins SAP-B and GM2-AP. J Biol Chem 275:35814–35819

    Article  PubMed  CAS  Google Scholar 

  40. Marouf A (2008) Untersuchung zum Wirkungsmechanismus pH-sensitiver Liposomen mit Bis(monoacylglycero)phosphat (BMP) als Membranlipid. Albert-Ludwigs-University Freiburg i. Br., Germany

    Google Scholar 

  41. Mellman I, Fuchs R, Helenius A (1986) Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 55:663–700

    Article  PubMed  CAS  Google Scholar 

  42. De Duve C (1984) A guided tour of the living cell, 1st edn. Scientific American Books, Inc, New York

    Google Scholar 

  43. Wang ML, Motamed M, Infante RE et al (2010) Identification of surface residues on niemann-pick C2 essential for hydrophobic Handoff of cholesterol to NPC1 in lysosomes. Cell Metab 12:166–173

    Article  PubMed  Google Scholar 

  44. Friedland N, Liou HL, Lobel P et al (2003) Structure of a cholesterol-binding protein deficient in Niemann-Pick type C2 disease. Proc Natl Acad Sci USA 100:2512–2517

    Article  PubMed  CAS  Google Scholar 

  45. Frederick TE, Chebukati JN, Mair CE et al (2009) Bis(monoacylglycero)phosphate forms stable small lamellar vesicle structures: insights into vesicular body formation in endosomes. Biophys J 96:1847–1855

    Article  PubMed  CAS  Google Scholar 

  46. Lullmann H, Lullmann-Rauch R, Wassermann O (1978) Lipidosis induced by amphiphilic cationic drugs. Biochem Pharmacol 27:1103–1108

    Article  PubMed  CAS  Google Scholar 

  47. Hurwitz R, Ferlinz K, Sandhoff K (1994) The tricyclic antidepressant desipramine causes proteolytic degradation of lysosomal sphingomyelinase in human fibroblasts. Biol Chem Hoppe Seyler 375:447–450

    Article  PubMed  CAS  Google Scholar 

  48. Kolzer M, Werth N, Sandhoff K (2004) Interactions of acid sphingomyelinase and lipid bilayers in the presence of the tricyclic antidepressant desipramine. FEBS Lett 559:96–98

    Article  PubMed  Google Scholar 

  49. Elojeimy S, Holman DH, Liu X et al (2006) New insights on the use of desipramine as an inhibitor for acid ceramidase. FEBS Lett 580:4751–4756

    Article  PubMed  CAS  Google Scholar 

  50. Locatelli-Hoops S, Remmel N, Klingenstein R et al (2006) Saposin A mobilizes lipids from low cholesterol and high bis(monoacylglycerol)phosphate-containing membranes: patient variant Saposin A lacks lipid extraction capacity. J Biol Chem 281:32451–32460

    Article  PubMed  CAS  Google Scholar 

  51. Remmel N, Locatelli-Hoops S, Breiden B et al (2007) Saposin B mobilizes lipids from cholesterol-poor and bis(monoacylglycero)phosphate-rich membranes at acidic pH. Unglycosylated patient variant saposin B lacks lipid-extraction capacity. FEBS J 274:3405–3420

    Article  PubMed  CAS  Google Scholar 

  52. Babalola JO, Wendeler M, Breiden B et al (2007) Development of an assay for the intermembrane transfer of cholesterol by Niemann-Pick C2 protein. Biol Chem 388:617–626

    Article  PubMed  CAS  Google Scholar 

  53. London E (2005) How principles of domain formation in model membranes may explain ambiguities concerning lipid raft formation in cells. Biochim Biophys Acta 1746:203–220

    Article  PubMed  CAS  Google Scholar 

  54. Rog T, Pasenkiewicz-Gierula M (2006) Cholesterol-sphingomyelin interactions: a molecular dynamics simulation study. Biophys J 91:3756–3767

    Article  PubMed  CAS  Google Scholar 

  55. Abdul-Hammed M, Breiden B, Adebayo MA et al (2010) Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion. J Lipid Res 51:1747–1760

    Article  PubMed  CAS  Google Scholar 

  56. Kolter T, Sandhoff K (2010) Lysosomal degradation of membrane lipids. FEBS Lett 584:1700–1712

    Article  PubMed  CAS  Google Scholar 

  57. Heravi J, Waite M (1999) Transacylase formation of bis(monoacylglycerol)phosphate. Biochim Biophys Acta 1437:277–286

    PubMed  CAS  Google Scholar 

  58. Wilkening G, Linke T, Sandhoff K (1998) Lysosomal degradation on vesicular membrane surfaces. Enhanced glucosylceramide degradation by lysosomal anionic lipids and activators. J Biol Chem 273:30271–30278

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work done in our laboratory was supported by the trans-collaborative research centre 83 project 7, the Special Program “Sphingolipids—Signals and Disease” (SA 257-24-2), and the SFB 645, all three funded by the German Research Foundation (DFG), and by the seventh framework program of the EU-funded “LipidomicNet” (proposal number 202272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Sandhoff.

Additional information

Special Issue: In Honour of Dr. Robert Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallala, H.D., Sandhoff, K. Biological Function of the Cellular Lipid BMP—BMP as a Key Activator for Cholesterol Sorting and Membrane Digestion. Neurochem Res 36, 1594–1600 (2011). https://doi.org/10.1007/s11064-010-0337-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0337-6

Keywords

Navigation