Skip to main content

Advertisement

Log in

Rapamycin Ameliorates Cognitive Impairments and Alzheimer’s Disease-Like Pathology with Restoring Mitochondrial Abnormality in the Hippocampus of Streptozotocin-Induced Diabetic Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) and diabetes mellitus (DM) share common pathophysiological findings, in particular, the mammalian target of rapamycin (mTOR) has been strongly implied to link to AD, while it also plays a key role in the insulin signaling pathway. However, the mechanism of how DM and AD is coupled remains elusive. In the present study, we found that streptozotocin (STZ)-induced DM mice significantly increased the levels P-mTOR Ser2448, P-p70S6K Thr389, P-tau Ser356 and Aβ levels (Aβ oligomer/monomer), as well as the levels of Drp1 and p-Drp1 S616 (mitochondrial fission proteins) are increased, whereas no change was found in the expression of Opa1, Mfn1 and Mfn2 (mitochondrial fusion proteins) compared with control mice. Moreover, the expression of 4-HNE and 8-OHdG showed an aberrant increase in the hippocampus of STZ-induced DM mice that is associated with a decreased capacity of spatial memory and a loss of synapses. Rapamycin, an inhibitor of mTOR, rescued the STZ-induced increases in mTOR/p70S6K activities, tau phosphorylation and Aβ levels, as well as mitochondria abnormality and cognitive impairment in mice. These findings imply that rapamycin prevents cognitive impairment and protects hippocampus neurons from AD-like pathology and mitochondrial abnormality, and also that rapamycin treatment could normalize these STZ-induced alterations by decreasing hippocampus mTOR/p70S6K hyperactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akhmedzhanova LT, Barinov AN, Strokov IA (2018) [Diabetic and non-diabetic neuropathies in patients with diabetes mellitus]. Zhurnal nevrologii i psikhiatrii imeni SS Korsakova 118:113–120

    Article  CAS  Google Scholar 

  2. Manschot SM, Biessels GJ, Rutten GE, Kessels RP, Gispen WH, Kappelle LJ, Utrecht Diabetic Encephalopathy Study G (2008) Peripheral and central neurologic complications in type 2 diabetes mellitus: no association in individual patients. J Neurol Sci 264:157–162

    Article  CAS  PubMed  Google Scholar 

  3. Bartl J, Monoranu CM, Wagner AK, Kolter J, Riederer P, Grunblatt E (2013) Alzheimer’s disease and type 2 diabetes: two diseases, one common link? World J Biol Psychiatry 14:233–240

    Article  PubMed  Google Scholar 

  4. Moreira PI (2012) Alzheimer’s disease and diabetes: an integrative view of the role of mitochondria, oxidative stress, and insulin. J Alzheimer’s Dis JAD 30(Suppl 2):S199–S215

    Article  CAS  Google Scholar 

  5. Rosales-Corral S, Tan DX, Manchester L, Reiter RJ (2015) Diabetes and Alzheimer disease two overlapping pathologies with the same background: oxidative stress. Oxidative Med Cell Longev 2015:985845

    Article  Google Scholar 

  6. Chen XQ, Mobley WC (2019) Alzheimer disease pathogenesis: insights from molecular and cellular biology studies of oligomeric abeta and tau species. Front NeuroSci 13:659

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ, Pavletich NP (2013) mTOR kinase structure, mechanism and regulation. Nature 497:217–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Takei N, Nawa H (2014) mTOR signaling and its roles in normal and abnormal brain development. Front Mol Neurosci 7:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Perluigi M, Di Domenico F, Butterfield DA (2015) mTOR signaling in aging and neurodegeneration: at the crossroad between metabolism dysfunction and impairment of autophagy. Neurobiol Dis 84:39–49

    Article  CAS  PubMed  Google Scholar 

  10. Weichhart T (2018) mTOR as regulator of lifespan, aging, and cellular senescence: a mini-review. Gerontology 64:127–134

    Article  CAS  PubMed  Google Scholar 

  11. Pei JJ, Hugon J (2008) mTOR-dependent signalling in Alzheimer’s disease. J Cell Mol Med 12:2525–2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Caccamo A, Majumder S, Richardson A, Strong R, Oddo S (2010) Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J Biol Chem 285:13107–13120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tang Z, Bereczki E, Zhang H, Wang S, Li C, Ji X, Branca RM, Lehtio J, Guan Z, Filipcik P, Xu S, Winblad B, Pei JJ (2013) Mammalian target of rapamycin (mTor) mediates tau protein dyshomeostasis: implication for Alzheimer disease. J Biol Chem 288:15556–15570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Caccamo A, Magri A, Medina DX, Wisely EV, Lopez-Aranda MF, Silva AJ, Oddo S (2013) mTOR regulates tau phosphorylation and degradation: implications for Alzheimer’s disease and other tauopathies. Aging cell 12:370–380

    Article  CAS  PubMed  Google Scholar 

  15. Wang S, Zhou SL, Min FY, Ma JJ, Shi XJ, Bereczki E, Wu J (2014) mTOR-mediated hyperphosphorylation of tau in the hippocampus is involved in cognitive deficits in streptozotocin-induced diabetic mice. Metab Brain Dis 29:729–736

    Article  CAS  PubMed  Google Scholar 

  16. Suhara T, Baba Y, Shimada BK, Higa JK, Matsui T (2017) The mTOR signaling pathway in myocardial dysfunction in type 2 diabetes mellitus. Curr Diabetes Rep 17:38

    Article  CAS  Google Scholar 

  17. Kandimalla R, Thirumala V, Reddy PH (2017) Is Alzheimer’s disease a type 3 diabetes? A critical appraisal. Biochim Biophys Acta Mol Basis Dis 1863:1078–1089

    Article  CAS  PubMed  Google Scholar 

  18. McCrimmon RJ, Sherwin RS (2010) Hypoglycemia in type 1 diabetes. Diabetes 59:2333–2339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. DeFronzo RA (2004) Pathogenesis of type 2 diabetes mellitus. Med Clin N Am 88:787–835 (ix)

    Article  CAS  PubMed  Google Scholar 

  20. Greenbaum CJ (2002) Insulin resistance in type 1 diabetes. Diab/Metab Res Rev 18:192–200

    Article  CAS  Google Scholar 

  21. Akomolafe A, Beiser A, Meigs JB, Au R, Green RC, Farrer LA, Wolf PA, Seshadri S (2006) Diabetes mellitus and risk of developing Alzheimer disease: results from the Framingham Study. Arch Neurol 63:1551–1555

    Article  PubMed  Google Scholar 

  22. Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P (2006) Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 5:64–74

    Article  PubMed  Google Scholar 

  23. Sims-Robinson C, Kim B, Rosko A, Feldman EL (2010) How does diabetes accelerate Alzheimer disease pathology? Nat Rev Neurol 6:551–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, Fuino RL, Kawaguchi KR, Samoyedny AJ, Wilson RS, Arvanitakis Z, Schneider JA, Wolf BA, Bennett DA, Trojanowski JQ, Arnold SE (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Investig 122:1316–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Biessels GJ, Reagan LP (2015) Hippocampal insulin resistance and cognitive dysfunction. Nat Rev Neurosci 16:660–671

    Article  CAS  PubMed  Google Scholar 

  26. Beauquis J, Roig P, De Nicola AF, Saravia F (2010) Short-term environmental enrichment enhances adult neurogenesis, vascular network and dendritic complexity in the hippocampus of type 1 diabetic mice. PLoS ONE 5:e13993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Alvarez EO, Banzan AM (1996) Hippocampus and learning: possible role of histamine receptors. Medicina 56:155–160

    CAS  PubMed  Google Scholar 

  28. Thomas J, Garg ML, Smith DW (2013) Altered expression of histone and synaptic plasticity associated genes in the hippocampus of streptozotocin-induced diabetic mice. Metab Brain Dis 28:613–618

    Article  CAS  PubMed  Google Scholar 

  29. An WL, Bjorkdahl C, Liu R, Cowburn RF, Winblad B, Pei JJ (2005) Mechanism of zinc-induced phosphorylation of p70 S6 kinase and glycogen synthase kinase 3beta in SH-SY5Y neuroblastoma cells. J Neurochem 92:1104–1115

    Article  CAS  PubMed  Google Scholar 

  30. de la Monte SM (2012) Contributions of brain insulin resistance and deficiency in amyloid-related neurodegeneration in Alzheimer’s disease. Drugs 72:49–66

    Article  PubMed  PubMed Central  Google Scholar 

  31. de la Monte SM (2017) Insulin resistance and neurodegeneration: progress towards the development of new therapeutics for Alzheimer’s disease. Drugs 77:47–65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Diehl T, Mullins R, Kapogiannis D (2017) Insulin resistance in Alzheimer’s disease. Transl Res 183:26–40

    Article  CAS  PubMed  Google Scholar 

  33. Liang H, Nie J, Van Skike CE, Valentine JM, Orr ME (2019) Mammalian target of rapamycin at the crossroad between Alzheimer’s disease and diabetes. Adv Exp Med Biol 1128:185–225

    Article  CAS  PubMed  Google Scholar 

  34. Zhu X, Perry G, Smith MA, Wang X (2013) Abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease. J Alzheimer’s Dis JAD 33(Suppl 1):S253–S262

    Google Scholar 

  35. Darroudi S, Fereydouni N, Tayefi M, Ahmadnezhad M, Zamani P, Tayefi B, Kharazmi J, Tavalaie S, Heidari-Bakavoli A, Azarpajouh MR, Ferns GA, Mohammadpour AH, Esmaily H, Ghayour-Mobarhan M (2019) Oxidative stress and inflammation, two features associated with a high percentage body fat, and that may lead to diabetes mellitus and metabolic syndrome. BioFactors 45:35–42

    Article  CAS  PubMed  Google Scholar 

  36. Wada J, Nakatsuka A (2016) Mitochondrial dynamics and mitochondrial dysfunction in diabetes. Acta Med Okayama 70:151–158

    CAS  PubMed  Google Scholar 

  37. Yoon Y, Galloway CA, Jhun BS, Yu T (2011) Mitochondrial dynamics in diabetes. Antioxid Redox Signal 14:439–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu W, Yamashita T, Tian F, Morimoto N, Ikeda Y, Deguchi K, Abe K (2013) Mitochondrial fusion and fission proteins expression dynamically change in a murine model of amyotrophic lateral sclerosis. Curr Neurovasc Res 10:222–230

    Article  CAS  PubMed  Google Scholar 

  39. Su B, Wang X, Nunomura A, Moreira PI, Lee HG, Perry G, Smith MA, Zhu X (2008) Oxidative stress signaling in Alzheimer’s disease. Curr Alzheimer Res 5:525–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jezek P, Jaburek M, Plecita-Hlavata L (2019) Contribution of oxidative stress and impaired biogenesis of pancreatic beta-cells to type 2 diabetes. Antioxid Redox Signal 31:722–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Flood JF, Mooradian AD, Morley JE (1990) Characteristics of learning and memory in streptozocin-induced diabetic mice. Diabetes 39:1391–1398

    Article  CAS  PubMed  Google Scholar 

  42. Scheff SW, Price DA, Schmitt FA, DeKosky ST, Mufson EJ (2007) Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 68:1501–1508

    Article  CAS  PubMed  Google Scholar 

  43. Brenner SR (2005) A focus on the synapse for neuroprotection in Alzheimer disease and other dementias. Neurology 64:1991

    Article  PubMed  Google Scholar 

  44. Coleman P, Federoff H, Kurlan R (2004) A focus on the synapse for neuroprotection in Alzheimer disease and other dementias. Neurology 63:1155–1162

    Article  PubMed  Google Scholar 

  45. Halloran J, Hussong SA, Burbank R, Podlutskaya N, Fischer KE, Sloane LB, Austad SN, Strong R, Richardson A, Hart MJ, Galvan V (2012) Chronic inhibition of mammalian target of rapamycin by rapamycin modulates cognitive and non-cognitive components of behavior throughout lifespan in mice. Neuroscience 223:102–113

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Chinese National Natural Science Foundation (81560241, 81960265), the Foundation for Science and Technology projects in Guizhou ([2017]1014, LH [2017]7156, [2018]1009, [2018]5752, [2020]1Y354), the Foundation for Science and Technology projects in Guiyang ([2019]9-2-7) and the Foundation of the Education Department of Guizhou Province (KY [2016]035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Tang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Liu, H., Cen, M. et al. Rapamycin Ameliorates Cognitive Impairments and Alzheimer’s Disease-Like Pathology with Restoring Mitochondrial Abnormality in the Hippocampus of Streptozotocin-Induced Diabetic Mice. Neurochem Res 46, 265–275 (2021). https://doi.org/10.1007/s11064-020-03160-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03160-6

Keywords

Navigation