Skip to main content

Advertisement

Log in

Recent advances in chlorophyll biosynthesis and breakdown in higher plants

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Chlorophyll (Chl) has unique and essential roles in photosynthetic light-harvesting and energy transduction, but its biosynthesis, accumulation and degradation is also associated with chloroplast development, photomorphogenesis and chloroplast-nuclear signaling. Biochemical analyses of the enzymatic steps paved the way to the identification of their encoding genes. Thus, important progress has been made in the recent elucidation of almost all genes involved in Chl biosynthesis and breakdown. In addition, analysis of mutants mainly in Arabidopsis, genetically engineered plants and the application of photo-reactive herbicides contributed to the genetic and regulatory characterization of the formation and breakdown of Chl. This review highlights recent progress in Chl metabolism indicating highly regulated pathways from the synthesis of precursors to Chl and its degradation to intermediates, which are not longer photochemically active.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beale, S.J. 1999. Enzymes of chlorophyll biosynthesis. Photosynth. Res. 60: 43–73.

    Google Scholar 

  • Benedetti, C.E. and Arruda, P. 2002. Altering the expression of the chlorophyllase gene ATHCOR1 in transgenic Arabidopsis caused changes in the chlorophyll-to-chlorophyllide ratio. Plant Physiol. 128: 1255–1263.

    Google Scholar 

  • Berghold, J., Breuker, K., Oberhuber, M., Hörtensteiner, S. and Kräutler, B. 2002. Chlorophyll breakdown in spinach: on the structure of five nonfluorescent chlorophyll catabolites. Photosynth. Res. 74: 109–119.

    Google Scholar 

  • Block, M.A., Tewari, A.K., Albrieux, C., Maréchal, E. and Joyard, J. 2002. The plant S-adenosyl-L-methionine: Mg–protoporphyrin IX methyltransferase is located in both envelope and thylakoid chloroplast membranes. Eur. J. Biochem. 269: 240–248.

    Google Scholar 

  • Cornah, J.E., Roper, J.M., Singh, D.P. and Smith, A.G. 2002. Measurement of ferrochelatase activity using a novel assay suggests that plastids are the major site of haem biosynthesis in both photosynthetic and non-photosynthetic cells of pea (Pisum sativum L.). Biochem. J. 362: 423–432.

    Google Scholar 

  • Frankenberg, N. and Lagarias, J.C. 2003. Phycocyanobilin: ferredoxin oxidoreductase of Anabaena sp. PCC 7120. J. Biol. Chem. 278: 9219–9226.

    Google Scholar 

  • Frankenberg, N., Mukougawa, K., Kohchi, T. and Lagarias, J.C. 2001. Functional genomic analysis of the HY2 family of ferredoxin-dependent bilin reductases from oxygenic photosynthetic organisms. Plant Cell 13: 965–978.

    Google Scholar 

  • Gaubier, P., Wu, H.J., Laudie, M., Delseny, M. and Grellet, F. 1995. A chlorophyll synthase gene from Arabidopsis thaliana. Mol. Gen. Genet. 249: 58–64.

    Google Scholar 

  • Gray, J., Janick-Bruckner, D., Bruckner, B., Close, P.S. and Johal, G.S. 2002. Light-dependent death of maize lls1 cells is mediated by mature chloroplasts. Plant Physiol. 130: 1894–1907.

    Google Scholar 

  • Gray, J., Wardzala, E., Yang, M., Reinbothe, S., Haller, S. and Pauli, F. 2004. A small family of LLS1-related non-heme oxygenases in plants with an origin amongst oxygenic photosynthesizers. Plant Mol. Biol. 54: 39–54.

    Google Scholar 

  • Greenberg, J.T. and Ausubel, F.M. 1993. Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging. Plant J. 4: 327–341.

    Google Scholar 

  • Greenberg, J.T., Guo, A., Klessig, D.F. and Ausubel, F.M. 1994. Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell 77: 551–563.

    Google Scholar 

  • Guo, R., Luo, M. and Weinstein, J.D. 1998. Magnesiumchelatase from developing pea leaves. Characterization of a soluble extract chloroplasts and resolution into three reauired protein fractions. Plant Physiol. 116: 605–615.

    Google Scholar 

  • Hansson, A., Kannangara, C.G., von Wettstein, D. and Hansson, M. 1999. Molecular basis for semidominance of missense mutations in the XANTHA-H (42-kDa) subunit of magnesium chelatase. Proc. Natl. Acad. Sci. USA 96: 1744–1749.

    Google Scholar 

  • Hendry, G.A.F., Houghton, J.D. and Brown, S.B. 1987. Chlorophyll degradation. A biological enigma. New Phytol. 107: 255–302.

    Google Scholar 

  • Hendry, G.A.F. and Stobart, A.K. 1986. Chlorophyll turnover in greening barley. Phytochemistry 25: 2735–2737.

    Google Scholar 

  • Hinchigeri, S.B., Hundle, B. and Richards, W.R. 1997. Demonstration that the BchH protein of Rhodobacter capsulatus activates S-adenosyl-L-methionine:magnesium protoporphyrin IX methyltransferase. FEBS Lett. 407: 337–342.

    Google Scholar 

  • Hinder, B., Schellenberg, M., Rodoni, S., Ginsburg, S., Vogt, E., Martinoia, E., Matile, P. and Hörtensteiner, S. 1996. How plants dispose of chlorophyll catabolites. Directly energized uptake of tetrapyrrolic breakdown products into isolated vacuoles. J. Biol. Chem. 271: 27233–27236.

    Google Scholar 

  • Holtorf, H., Reinbothe, S., Reinbothe, C., Bereza, B. and Apel, K. 1995. Two routes of chlorophyll synthesis that are differentially regulated by light in barly (Hordeum vulgare L.). Proc. Natl. Acad. Sci. USA 92: 3254–3258.

    Google Scholar 

  • Hörtensteiner, S., Rodoni, S., Schellenberg, M., Vicentini, F., Nandi, O.I., Qiu, Y.-L. and Matile, P. 2000. Evolution of chlorophyll degradation: the significance of RCC reductase. Plant Biol. 2: 63–67.

    Google Scholar 

  • Hörtensteiner, S., Vicentini, F. and Matile, P. 1995. Chlorophyll breakdown in senescent cotyledons of rape, Brassica napus L.: enzymatic cleavage of phaeophorbide a in vitro. New Phytol. 129: 237–246.

    Google Scholar 

  • Ilag, L.L., Kumar, A.M. and Söll, D. 1994. Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. Plant Cell 6: 265–275.

    Google Scholar 

  • Ishikawa, A., Okamoto, H., Iwasaki, Y. and Asahi, T. 2001. A deficiency of coproporphyrinogen III oxidase causes lesion formation in Arabidopsis. Plant J. 27: 89–99.

    Google Scholar 

  • Ito, H. and Tanaka, A. 1996. Determination of the activity of chlorophyll b to chlorophyll a conversion during greening of etiolated cucumber cotyledons by using pyrochlorophyllide b. Plant Physiol. Biochem. 34: 35–40.

    Google Scholar 

  • Jakob-Wilk, D., Holland, D., Goldschmidt, E.E., Riov, J. and Eyal, Y. 1999. Chlorophyll breakdown by chlorophyllase: isolation and functional expression of the Chlase1 gene from ethylene-treated Citrus fruit and its regulation during development. Plant J. 20: 653–661.

    Google Scholar 

  • Kaczor, C.M., Smith, M.W., Sangwan, I. and O'Brian, M.R. 1994. Plant d-aminolevulinic acid dehydratase. Expression in soybean root nodules and evidence for a bacterial lineage of the Alad gene. Plant Physiol. 104: 1411–1417.

    Google Scholar 

  • Keller, Y., Bouvier, F.D., Harlingue, A. and Camara, B. 1998. Metabolic compartmentation of plastid prenyllipid biosynthesis-Evidence for the involvement of a multifunctional geranylgeranyl reductase. Eur. J. Biochem. 251: 413–417.

    Google Scholar 

  • Kreuz, K., Tommasini, R. and Martinoia, E. 1996. Old enzymes for a new job. Herbicide detoxification in plants. Plant Physiol. 111: 349–353.

    Google Scholar 

  • Kropat, J., Oster, U., Rüdiger, W. and Beck, C.F. 1997. Chlorophyll precursors are signals of chloroplast origin involved in light induction of nuclear heat-shock genes. Proc. Natl. Acad. Sci. USA 94: 14168–14172.

    Google Scholar 

  • Kropat, J., Oster, U., Rüdiger, W. and Beck, C.F. 2000. Chloroplast signalling in the light induction of nuclear HSP70 genes requires the accumulation of chlorophyll precursors and their accessibility to cytoplasm/nucleus. Plant J. 24: 523–531.

    Google Scholar 

  • Kruse, E., Mock, H.P. and Grimm, B. 1995. Reduction of coproporphyrinogen oxidase level by antisense RNA synthesis leads to deregulated gene expression of plastid proteins and affects the oxidative defense system. EMBO J 14: 3712–3720.

    Google Scholar 

  • Larkin, R.M., Alonso, J.M., Ecker, J.R. and Chory, J. 2003. GUN4, a regulator of chlorophyll synthesis and intracellular signalling. Science 299: 902–906.

    Google Scholar 

  • Lee, K.P., Kim, C., Lee, D.W. and Apel, K. 2003. TIGRINA d, required for regulating the biosynthesis of tetrapyrroles in barley, is an ortholog of the FLU gene of Arabidopsis thaliana. FEBS Lett. 553: 119–124.

    Google Scholar 

  • Lim, S.H., Witty, M., Wallace-Cook, A.D.M., Ilag, L.I. and Smith, A.G. 1994. Porphobilinogen deaminase is encoded by a single gene in Arabidopsis thaliana and is targeted to the chloroplasts. Plant Mol. Biol. 26: 863–872.

    Google Scholar 

  • Lindemann, P., Koch, A., Degenhardt, B., Hause, B., Grimm, B. and Papadopoulos, V. 2004. A novel Arabidopsis thaliana protein is a functional peripheral-type benzodiazepine receptor. Plant Cell Physiol. 45: 723–733.

    Google Scholar 

  • Losey, F.G. and Engel, N. 2001. Isolation and characterization of a urobilinogenoidic chlorophyll catabolite from Hordeum vulgare L. J. Biol. Chem. 276: 27233–27236.

    Google Scholar 

  • Lu, Y.-P., Li, Z.-S., Drozdowicz, Y.-M., Hörtensteiner, S., Martinoia, E. and Rea, P.A. 1998. AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: functional comparisons with AtMRP1. Plant Cell 10: 267–282.

    Google Scholar 

  • Mach, J.M., Castillo, A.R., Hoogstraten, R. and Greenberg, J.T. 2001. The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proc. Natl. Acad. Sci. USA 98: 771–776.

    Google Scholar 

  • Matile, P., Hörtensteiner, S. and Thomas, H. 1999. Chlorophyll degradation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 67–95.

    Google Scholar 

  • Matile, P., Schellenberg, M. and Vicentini, F. 1997. Localization of chlorophyllase in the chloroplast envelope. Planta 201: 96–99.

    Google Scholar 

  • McCormac, A.C., Fischer, A., Kumar, A.M., Söll, D. and Terry, M.J. 2001. Regulation of HEMA1 expression by phytochrome and a plastid signal during de-etiolation in Arabidopsis thaliana. Plant J. 25: 549–561.

    Google Scholar 

  • Meskauskiene, R. and Apel, K. 2002. Interaction of FLU, a negative regulator of tetrapyrrole biosynthesis, with the glutamyl-tRNA reductase requires the tetratricopeptide repeat domain of FLU. FEBS Lett. 532: 27–30.

    Google Scholar 

  • Meskauskiene, R., Nater, M., Goslings, D., Kessler, F., op den Camp, R. and Apel, K. 2001. FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 98: 12826–12831.

    Google Scholar 

  • Mochizuki, N., Brusslan, J.A., Larkin, R., Nagatani, A. and Chory, J. 2001. Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc. Natl. Acad. Sci. USA 98: 2053–2058.

    Google Scholar 

  • Mock, H.P. and Grimm, B. 1997. Expression of uroporphyrinogen decarboxylase antisense RNA in tobacco leads to reduction of UROD protein, but also affects activities of other enzymes involved in tetrapyrrole biosynthesis. Plant Physiol. 113: 1101–1112.

    Google Scholar 

  • Mock, H.P., Heller, W., Molina, A., Neubohn, B., Sandermann, H., Jr. and Grimm, B. 1999. Expression of uroporphyrinogen decarboxylase or coproporphyrinogen oxidase antisense RNA in tobacco induces pathogen defense responses conferring increased resistance to tobacco mosaic virus. J. Biol. Chem. 274: 4231–4238.

    Google Scholar 

  • Møller, S.G., Kunkel, T. and Chua, N.H. 2001. A plastidic ABC protein involved in intercompartmental communication of light signalling. Genes Dev. 15: 90–103.

    Google Scholar 

  • Moser, J., Schubert, W.D., Beier, V., Bringemeier, I., Jahn, D. and Heinz, D.W. 2001. V-shaped structure of glutamyltRNA reductase, the first enzyme of tRNA-dependent tetrapyrrole biosynthesis. EMBO J. 20: 6583–6590.

    Google Scholar 

  • Nakayama, M., Masuda, T., Bando, T., Yamagata, H., Otha, H. and Takamiya, K. 1998. Cloning and expression of the soybean chlH gene encoding a subunit of Mg-chelatase and localization of the Mg2+ concentration-dependent ChlH protein within the chloroplast. Plant Cell Physiol. 39: 275–284.

    Google Scholar 

  • Oberhuber, M., Berghold, J., Breuker, K., Hörtensteiner, S. and Kräutler, B. 2003. Breakdown of chlorophyll: a nonenzymatic reaction accounts for the formation of the cololess ''nonfluorescent'' chlorophyll catabolites. Proc. Natl. Acad. Sci. USA 100: 6910–6915.

    Google Scholar 

  • op den Camp, R.G., Przybyla, D., Ochsenbein, C., Laloi, C., Kim, C., Danon, A., Wagner, D., Hideg, E., Gobel, C., Feussner, I., Nater, M. and Apel, K. 2003. Rapid induction of distinct stress responses after release of singlet oxygen in Arabidopsis. Plant Cell 15: 2320–2332.

    Google Scholar 

  • Oster, U., Tanaka, R., Tanaka, A. and Rudiger, W. 2000. Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J. 21: 305–310.

    Google Scholar 

  • Papenbrock, J., Gräfe, S., Kruse, E., Hänel, F. and Grimm, B. 1997. Mg-chelatase of tobacco: identification of a Chl D cDNA sequence encoding a third subunit, analysis of the interaction of the three subunits with the yeast two-hybrid system, and reconstitution of the enzyme activity by coexpression of recombinant CHL D, CHL H and CHL I. Plant J. 12: 981–990.

    Google Scholar 

  • Papenbrock, J., Mock, H.P., Kruse, E. and Grimm, B. 1999. Expression studies in tetrapyrrole biosynthesis: inverse maxima of magnesium chelatase and ferrochelatase activity during cyclic photoperiods. Planta 208: 264–273.

    Google Scholar 

  • Papenbrock, J., Mock, H.P., Tanaka, R., Kruse, E. and Grimm, B. 2000. Role of magnesium chelatase activity in the early steps of the tetrapyrrole biosynthetic pathway. Plant Physiol. 122: 1161–1169.

    Google Scholar 

  • Pinta, V., Picaud, M., Reiss-Husson, F. and Astier, C. 2002. Rubrivivax gelantinosus acsF (previously orf358) codes for a conserved, putative binuclear-iron-cluster-containing protein involved in aerobic oxidative cyclization of Mg-protoporphyrin IX monomethylester. J. Bacteriol. 184: 746–753.

    Google Scholar 

  • Pružinská, A., Anders, I., Tanner, G., Roca, M. and Hörtensteiner, S. 2003. Chlorophyll breakdown: pheophorbide a oxygenase is a Rieske-type iron-sulfur protein, encoded by the accelerated cell death 1gene. Proc. Natl. Acad. Sci. USA 100: 15259–15264.

    Google Scholar 

  • Reinbothe, S., Mache, R. and Reinbothe, C. 2000. A second, substrate-dependent site of protein import into chloroplasts. Proc. Natl. Acad. Sci. USA 97: 9795–9800.

    Google Scholar 

  • Reinbothe, S., Quigley, F., Gray, J., Schemenewitz, A. and Reinbothe, C. 2004a. Identification of plastid envelope proteins required for import of protochlorophyllide oxidoreductase A into the chloroplast of barley. Proc. Natl. Acad. Sci. USA 101: 2197–2202.

    Google Scholar 

  • Reinbothe, S., Quigley, F., Springer, A., Schemenewitz, A. and Reinbothe, C. 2004b. The outer plastid envelope protein OEP16: role as precursor translocase in import of protochlorophyllide oxidoreductase A. Proc. Natl. Acad. Sci. USA 101: 2203–2208.

    Google Scholar 

  • Rodoni, S., Mühlecker, W., Anderl, M., Kräutler, B., Moser, D., Thomas, H., Matile, P. and Hörtensteiner, S. 1997a. Chlorophyll breakdown in senescent chloroplasts. Cleavage of pheophorbide a in two enzymic steps. Plant Physiol. 115: 669–676.

    Google Scholar 

  • Rodoni, S., Vicentini, F., Schellenberg, M., Matile, P. and Hörtensteiner, S. 1997b. Partial purification and characterization of red chlorophyll catabolite reductase, a stroma protein involved in chlorophyll breakdown. Plant Physiol. 115: 677–682.

    Google Scholar 

  • Rüdiger, W. 1997. Chlorophyll metabolism: from outer space down to the molecular level. Phytochemistry 46: 1151–1167.

    Google Scholar 

  • Scheumann, V., Schoch, S. and Rüdiger, W. 1998. Chlorophyll a formation in the chlorophyll b reductase reaction requires reduced ferredoxin. J. Biol. Chem. 273: 35102–35108.

    Google Scholar 

  • Scheumann, V., Schoch, S. and Rüdiger, W. 1999. Chlorophyll b reduction during senescence of barley seedlings. Planta 209: 364–370.

    Google Scholar 

  • Schmid, H.C., Oster, U., Kögel, J., Lenz, S. and üdiger, W. 2001. Cloning and characterization of chlorophyll synthase from Avena sativa. Biol. Chem. 382: 903–911.

    Google Scholar 

  • Schmidt, C.L. and Shaw, L. 2001. A comprehensive phylogenetic analysis of Rieske and Rieske-type iron-sulfur protreins. J. Bioenerg. Biomembr. 33: 9–26.

    Google Scholar 

  • Singh, D.P., Cornah, J.E., Hadingham, S. and Smith, A.G. 2002. Expression analysis of the two ferrochelatase genes in Arabidopsis in different tissues and under stress conditions reveals their different roles in haem biosynthesis. Plant Mol. Biol. 50: 773–788.

    Google Scholar 

  • Spassieva, S. and Hille, J. 2002. A lesion mimic phenotype in tomato obtained by isolating and silencing an Lls1 homologue. Plant Sci. 162: 543–549.

    Google Scholar 

  • Sperling, U., Franck, F., van Cleve, B., Frick, G., Apel, K. and Armstrong, G.A. 1998. Etioplast differentiation in Arabidopsis: both PORA and PORB restore the prolamellar body and photoactivate protochlorophyllide-F655 to the cop1 photomorphogenic mutant. Plant Cell 10: 283–296.

    Google Scholar 

  • Strand, Å., Asami, T., Alonso, J., Ecker, J.R. and Chory, J. 2003. Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrin IX. Nature 421: 79–83.

    Google Scholar 

  • Su, Q., Frick, G., Armstrong, G. and Apel, K. 2001. POR C of Arabidopsis thaliana: a third light-and NADPH-dependent protochlorophyllide oxidoreductase that is differentially regulated by light. Plant Mol. Biol. 47: 805–813.

    Google Scholar 

  • Susek, R.E., Ausubel, F.M. and Chory, J. 1993. Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development. Cell 74: 787–799.

    Google Scholar 

  • Suzuki, J.Y. and Bauer, C.E. 1995. Altered monovinyl and divinyl protochlorophyllide pools in bchJ mutants of Rhodobacter capsulatus. Possible monovinyl substrate discrimination of light-independent protochlorophyllide reductase. J. Biol. Chem. 270: 3732–3740.

    Google Scholar 

  • Suzuki, T. and Shioi, Y. 2002. Re-examination of Mg-dechelation reaction in the degradation of chlorophylls using chlorophyllin a as substrate. Photosynth. Res. 74: 217–223.

    Google Scholar 

  • Suzuki, Y., Doi, M. and Shioi, Y. 2002. Two enzymatic reaction pathways in the formation of pyropheophorbide a. Photosynth. Res. 74: 225–233.

    Google Scholar 

  • Suzuki, Y. and Shioi, Y. 1999. Detection of chlorophyll breakdown products in the senescent leaves of higher plants. Plant Cell Physiol. 40: 909–915.

    Google Scholar 

  • Takamiya, K., Tsuchiya, T. and Ohta, H. 2000. Degradation pathway(s) of chlorophyll: what has gene cloning revealed? Trends Plant Sci. 5: 426–431.

    Google Scholar 

  • Tanaka, A., Ito, H., Tanaka, R., Tanaka, N.K., Yoshida, K. and Okada, K. 1998. Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc. Natl. Acad. Sci. USA 95: 12719–12723.

    Google Scholar 

  • Tanaka, R., Hirashima, M., Satoh, S. and Tanaka, A. 2003. The Arabidopsis-accelerated cell death gene ACD1 is involved in oxygenation of pheophorbide a: inhibition of pheophorbide a oxygenase activity does not lead to the ''stay-green'' phenotype in Arabidopsis. Plant Cell Physiol. 44: 1266–1274.

    Google Scholar 

  • Tanaka, R., Oster, U., Kruse, E., Rüdiger, W. and Grimm, B. 1999. Reduced activity of geranylgeranyl reductase leads to loss of chlorophyll and tocopherol and to partially geranylgeranylated chlorophyll in transgenic tobacco plants expressing antisense RNA for geranylgeranyl reductase. Plant Physiol. 120: 695–704.

    Google Scholar 

  • Terry, M.J. and Kendrick, R.E. 1999. Feedback inhibition of chlorophyll synthesis in the phytochrome chromophoredeficient aurea and yellow-green 2 mutants of tomato. Plant Physiol. 119: 143–152.

    Google Scholar 

  • Thimm, O., Blasing, O., Gibon, Y., Nagel, A., Meyer, S., Kruger, P., Selbig, J., Muller, L.A., Rhee, S.Y. and Stitt, M. 2004. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37: 914–939.

    Google Scholar 

  • Thomas, H., Bortlik, K.-H., Rentsch, D., Schellenberg, M. and Matile, P. 1989. Catabolism of chlorophyll in vivo: signifi-cance of polar chlorophyll catabolites in a non-yellowing senescence mutant of Festuca pratensis Huds. New Phytol. 111: 3–8.

    Google Scholar 

  • Thomas, H., Schellenberg, M., Vicentini, F. and Matile, P. 1996. Gregor Mendel's green and yellow pea seeds. Bot. Acta 109: 3–4.

    Google Scholar 

  • Tommasini, R., Vogt, E., Fromenteau, M., Hörtensteiner, S., Matile, P., Amrhein, N. and Martinoia, E. 1998. An ABC transporter of Arabidopsis thaliana has both glutathioneconjugate and chlorophyll catabolite transport activity. Plant J. 13: 773–780.

    Google Scholar 

  • Tottey, S., Block, M.A., Allen, M., Westergren, T., Albrieux, C., Scheller, H.V., Merchant, S. and Jensen, P.E. 2003. Arabidopsis CHL27, located in both envelope and thylakoid membranes, is required for the synthesis of protochlorophyllide. Proc. Natl. Acad. Sci. USA 100: 16119–16124.

    Google Scholar 

  • Tsuchiya, T., Ohta, H., Okawa, K., Iwamatsu, A., Shimada, H., Masuda, T. and Takamiya, K. 1999. Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. Proc. Natl. Acad. Sci. USA 96: 15362–15367.

    Google Scholar 

  • Tsuchiya, T., Suzuki, T., Yamada, T., Shimada, H., Masuda, T., Ohta, H. and Takamiya, K. 2003. Chlorophyllase as a serine hydrolase: identification of a putative catalytic triad. Plant Cell. Physiol. 44: 96–101.

    Google Scholar 

  • Vicentini, F., Hörtensteiner, S., Schellenberg, M., Thomas, H. and Matile, P. 1995. Chlorophyll breakdown in senescent leaves: identification of the biochemical lesion in a stay-green genotype of Festuca pratensis Huds. New Phytol. 129: 247–252.

    Google Scholar 

  • Vothknecht, U.C., Kannangara, C.G. and von Wettstein, D. 1996. Expression of catalytically active barley glutamyl tRNAGlu reductase in Escherichia coli as a fusion protein with glutathione S-transferase. Proc. Natl. Acad. Sci. USA 93: 9287–9291.

    Google Scholar 

  • Watanabe, N., Che, F.-S., Iwano, M., Takayama, S., Yoshida, S. and Isogai, A. 2001. Dual targeting of spinach protoporphyrinogen oxidase II to mitochondria and chloroplasts by alternative use of two in-frame initiation codons. J. Biol. Chem. 276: 20474–20481.

    Google Scholar 

  • Wilde, A., Mikolajczyk, S., Alawady, A., Lokstein, H. and Grimm, B. 2004. The gun4 gene is essential for cyanobacterial porphyrin metabolism. FEBS Lett. 571: 119–123.

    Google Scholar 

  • Wüthrich, K.L., Bovet, L., Hunziker, P.E., Donnison, I.S. and Hörtensteiner, S. 2000. Molecular cloning, functional expression and characterisation of RCC reductase involved in chlorophyll catabolism. Plant J. 21: 189–198.

    Google Scholar 

  • Yaronskaya, E., Ziemann, V., Walter, G., Averina, N., Börner, T. and Grimm, B. 2003. Metabolic control of the tetrapyrrole biosynthetic pathway for porphyrin distribution in the barley mutant albostrians. Plant J. 35: 512–522.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckhardt, U., Grimm, B. & Hörtensteiner, S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol 56, 1–14 (2004). https://doi.org/10.1007/s11103-004-2331-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-004-2331-3

Navigation