Skip to main content
Log in

Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta)

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Cassava is the major root crop for a quarter billion subsistence farmers in sub-Saharan Africa. It is valued for its ability to grow in adverse environments and the food security it provides. Cassava contains potentially toxic levels of cyanogenic glycosides (linamarin) which protect the plant from herbivory and theft. The cyanogens, including linamarin and its deglycosylated product, acetone cyanohydrin, can be efficiently removed from the root by various processing procedures. Short-cuts in processing, which may occur during famines, can result in only partial removal of cyanogens. Residual cyanogens in cassava foods may cause neurological disorders or paralysis, particularly in nutritionally compromised individuals. To address this problem and to further understand the function of cyanogenic glycosides in cassava, we have generated transgenic cassava in which cyanogenic glycoside synthesis has been selectively inhibited in leaves and roots by antisense expression of CYP79D1/D2 gene fragments. The CYP79D1/D2 genes encode two highly similar cytochrome P450s that catalyze the first-dedicated step in cyanogenic glycoside synthesis. Transgenic plants in which the expression of these genes was selectively inhibited in leaves had substantially reduced (60– 94% reduction) linamarin leaf levels. Surprisingly, these plants also had a greater than a 99% reduction in root linamarin content. In contrast, transgenic plants in which the CYP79D1/D2 transcripts were reduced to non-detectable levels in roots had normal root linamarin levels. These results demonstrate that linamarin synthesized in leaves is transported to the roots and accounts for nearly all of the root linamarin content. Importantly, transgenic plants having reduced leaf and root linamarin content were unable to grow in the absence of reduced nitrogen (NH3) . Cassava roots have previously been demonstrated to have an active cyanide assimilation pathway leading to the synthesis of amino acids. We propose that cyanide derived from linamarin is a major source of reduced nitrogen for cassava root protein synthesis. Disruption of linamarin transport from leaves in CYP79D1/D2 anti-sense plants prevents the growth of cassava roots in the absence of an alternate source of reduced nitrogen. An alternative strategy for reducing cyanogen toxicity in cassava foods is to accelerate cyanogenesis and cyanide volatilization during food processing. To achieve this objective, we have expressed the leaf-specific enzyme hydroxynitrile lyase (HNL) in roots. HNL catalyzes the breakdown of acetone cyanohydrin to cyanide. Expression of HNL in roots accelerated cyanogenesis by more than three-fold substantially reducing the accumulation of acetone cyanohydrin during processing relative to wild-type roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • A. Akintonwa O. Tunwashe (1992) ArticleTitleFatal cyanide poisoning from cassava-based meal Human Exp. Toxic. 11 47–49

    Google Scholar 

  • M. Andersen P. Bush I. Svendsen B. Moller (2000) ArticleTitleCytochromes P450 from cassava catalyzing the first steps in the biosynthesis of the cyanogenic glycosides linamarin and lotaustralin J. Biol. Chem. 275 1966–1975 Occurrence Handle10.1074/jbc.275.3.1966 Occurrence Handle10636899

    Article  PubMed  Google Scholar 

  • S. Bak C.E. Olsen B.A. Halkier B.L. Moller (2002) ArticleTitleTransgenic tobacco and Arabidopsis plants expressing the two multifunctional sorghum cytochrome P450 enzymes, CYP79A1 and CYP71E1, are cyanogenic and accumulate metabolites derived from intermediates in Dhurrin biosynthesis Plant Physiol. 123 1437–1448 Occurrence Handle10.1104/pp.123.4.1437

    Article  Google Scholar 

  • C. Balagopalan,G.Padmaja,S.Nanda,S.Morthy1988Cassava nutrition and toxicityIn: Cassava in FoodFeed and Industry. CRC Press, Boca Raton, Florida

  • M.Bediako, B.Tapper,G.Pritchard 1981Metabolism synthetic site and translocation of cyanogenic glucoside in cassavaIn: E. Terry (Ed.) Proceedings of the first triennial root crops symposium of the International society for tropical root crops IDRC Canada, pp. 143–148

  • A.Bellotti,B.Arias,1993The possible role of HCN on the biology and feeding behavior of the cassava burrowing bug (Cyrtomenus bergi Froeschner)In: W.M. Roca and A.M. Thro (Eds.) Proceedings of the first international scientific meeting of the Cassava Biotechnology Network25–28 August 1992. Cali, Colombia: pp 406–409, Centro Internacional de Agricultura Tropical

  • A. Bellotti L. Riss (1994) ArticleTitleCassava cyanogenic potential and resistance to pests and diseases Acta Hort. 375 141–151

    Google Scholar 

  • R. Best T. Hargrove (1994) Cassava: the latest facts about an ancient crop CIAT Publication Cali, Colombia

    Google Scholar 

  • M. Bokanga (1994) ArticleTitleProcessing of cassava leaves for human consumption Acta Hort. 375 203–207

    Google Scholar 

  • J. Brusslan E. Tobin (1992) ArticleTitleLight-independent developmental regulation of cab gene expression in Arabidopsis thaliana seedlings Proc. Natl. Acad. Sci. USA 89 7791–7795 Occurrence Handle1380166

    PubMed  Google Scholar 

  • D. Byrne (1984) ArticleTitleBreeding cassava Plant Breeding Rev. 2 73–134

    Google Scholar 

  • P.A. Calatayud B. Le Ru (1996) ArticleTitleStudy of the nutritional relationships between cassava and mealybug and its host plant Bull Soc. Zool. Fr. Evol. Zool. 121 391–398

    Google Scholar 

  • Cliff, J., Lundquist, P., Mårtenssen, J., Rosling H. and Sörbo, B. 1985. Association of high cyanide and low sulphur intake in cassava-induced spastic paraperesis. Lancet ii: 1211–1213.

  • J. Cock (1985) Cassava: New potential for a neglected crop Westfield Press London

    Google Scholar 

  • E. Conn (1979) ArticleTitleCyanogenic glycosides Int. Rev. Biochem. 27 21–43

    Google Scholar 

  • E. Conn (1994) ArticleTitleCyanogenesis–a personal perspective Acta Hort. 375 31–43

    Google Scholar 

  • F. Delange L. Ekpechi H. Rosling (1994) ArticleTitleCassava cyanogenesis and iodine deficiency disorder Acta Hort. 375 289–293

    Google Scholar 

  • A. Dixon R. Asiedu M. Bokanga (1994) ArticleTitleBreeding of cassava for low cyanogenic potential: problems, progress and prospects Acta Hort. 375 153–161

    Google Scholar 

  • L. Du M. Bokanga B. Moller B. Halkier (1995) ArticleTitleThe biosynthesis of cyanogenic glucosides in roots of cassava Phytochem. 39 323–326

    Google Scholar 

  • M. Elias P. Sudhakaran B. Nambisan (1997a) ArticleTitlePurification and characterization of - cyanoalanine synthase from cassava tissues Phytochem. 46 469–472

    Google Scholar 

  • M. Elias B. Nambisan P. Sudhakaran (1997b) ArticleTitleCatabolism of linamarin in cassava Plant Sci. 126 155–162

    Google Scholar 

  • M. Ernesto A. Cardoso D. Nicala E. Mirione F. Massaza J. Cliff M. Haque J. Bradbury (2002) ArticleTitlePersistent konzo and cyanogen toxicity from cassava in northern Mozambique Acta Trop. 82 357–362 Occurrence Handle12039675

    PubMed  Google Scholar 

  • W. Howlett G. Brubaker N. Mlingi H. Rosling (1990) ArticleTitleKonzo, an epidemic upper motor neuron disease studied in Tanzania Brain 113 223–235 Occurrence Handle2302534

    PubMed  Google Scholar 

  • M.A. Hughes K. Brown A. Pancoro B.S. Murray E. Oxtoby J. Hughes (1992) ArticleTitleA molecular and biochemical analysis of the structure of the cyanogenic beta-glucosidase (linamarase) from cassava (Manihot esculenta Cranz) Arch. Biochem. Biophys. 295 273–279 Occurrence Handle1586156

    PubMed  Google Scholar 

  • J. Hughes F. Carvahlo M. Hughes (1994) ArticleTitlePurification, characterization and cloning of ▮-hydroxynitrile lyase from cassava (Manihot esculenta Crantz) Arch. Biochem. Biophys. 311 496–502 Occurrence Handle8203915

    PubMed  Google Scholar 

  • K. Kawano K. Narintaraporn S. Narintaraporn S. Sarakarn A. Limsila W. Watan-Anonta (1998) ArticleTitleYield improvement in a multistage breeding program for cassava Crop Sci. 38 325–332

    Google Scholar 

  • S. Kim D. Gregory W. Park (1994) ArticleTitleNuclear protein factors binding to a class-I patatin promoter region are tuber-specific and sucrose-inducible Plant Mol. Biol. 26 603–615 Occurrence Handle7948916

    PubMed  Google Scholar 

  • B. Koch V. Nielsen B. Halkier C. Olsen B. Møller (1992) ArticleTitleThe biosynthesis of cyanogenic glycosides in seedlings of cassava (Manihot esculenta Crantz) Arch. Biochem. Biophys. 292 141–150 Occurrence Handle1727632

    PubMed  Google Scholar 

  • P.J.Lea,R.D.Blackwell,K.W.Joy1992In: KMengel and D.H. Pillbeam (Eds.) Nitrogen Metabolism in Plants Claredon pressOxford, pp. 153–186

  • P.J.Lea,S.A.Robinson,G.R.Stewart,1990In: (B.J Miflin and P.J. Lea(Eds.)) The Biochemistry of Plants vol. 16, Academic Press, San Diego. pp 121–159

  • P. Lundquist H. Rosling B. Sörbo (1985) ArticleTitleDetermination of cyanide in whole blood, erythrocytes and plasma Clin. Chem. 31 591–595 Occurrence Handle3978792

    PubMed  Google Scholar 

  • M. Makame M. Akoroda S. Hahn (1987) ArticleTitleEffects of reciprocal stem grafts on cyanide translocation in cassava J.␣Agr. Sci. 109 605–608

    Google Scholar 

  • J. McMahon (1997) Physiological and biochemical analysis of factors regulating the synthesis of linamarin in the tropical plant cassava (Manihot esculenta Crantz), Ph.D thesis The Ohio State University Columbus, Ohio

    Google Scholar 

  • J. McMahon,R.Sayre,1994Regulation of cyanogenic potential in cassava (Manihot esculenta Crantz) In: W.M. Roca and A.M. Thro (Eds.) Proceedings of the Second International Scientific Meeting of the Cassava Biotechnology Networkpp. 423–438, Bogor, Indonesia

  • J. McMahon W. White R. Sayre (1995) ArticleTitleCyanogenesis in cassava (Manihot esculenta) J. Exp. Bot. 46 731–741

    Google Scholar 

  • O. Mkpong H. Yan G. Chism R. Sayre (1990) ArticleTitlePurification, characterization, and localization of linamarase in cassava Plant Physiol. 93 176–181

    Google Scholar 

  • N Mlingi S. Kimatta H. Rosling (1991) ArticleTitleKonzo, a paralytic disease observed in southern Tanzania Tropical Doctor 21 24–25

    Google Scholar 

  • A. Nahrstedt (1985) ArticleTitleCyanogenic compounds as protecting agents for organisms Plant Syst. Evol. 150 35–47

    Google Scholar 

  • F. Nartey (1969) ArticleTitleStudies on cassava Manihot utillisima, biosynthesis of asparagines-14C from 14C-labelled hydrogen cyanide and its relations with cyanogenesis Physiol. Plantarum. 22 1085–1096

    Google Scholar 

  • F. Nweke D. Spencer J. Lynam (2002) The Cassava transformation: Africa’s Best-Kept Secret Mich. St. Univ. Press East Lansing, USA

    Google Scholar 

  • O. Oluwole A. Onabolu H. Link H. Roslin (2000) ArticleTitlePersistence of tropical ataxic neuropathy in a Nigerian community J. Neurol. Neurosurg. Psych. 69 96–101

    Google Scholar 

  • B. Osuntokun (1981) ArticleTitleCassava diet, chronic cyanide intoxification and neuropathy in Nigerian Africans World Rev. Nutr. Diet. 36 141–173 Occurrence Handle6259841

    PubMed  Google Scholar 

  • H. Rosling (1994) ArticleTitleMeasuring effect in humans of dietary cyanide exposure from cassava Acta Hort. 375 271–283

    Google Scholar 

  • H. Rosling N. Mlingi T. Tylleskar M. Banea (1993) Causal mechanisms behind human diseases induced by cyanide exposure from cassava W.M. Roca A.M. Thro (Eds) Proceedings of the first international scientific meeting of the Cassava Biotechnology Network Centro Internacional de Agricultura Tropical Cali, Colombia 366–375

    Google Scholar 

  • G. Scott R. Best M. Rosegrant M. Bokanga (2002) Roots and tubers in the global food system: a vision statement to the year 2020A co-publication of the International Potato CenterCentro Internacional de Agricultura Tropical, International Food Policy Research institute, International Institute of Tropical Agriculture and International Plant Genetic Resources Institute. Lima, Peru

    Google Scholar 

  • D. Selmar (1994) ArticleTitleTranslocation of cyanogenic glycosides in cassava Acta Hort. 375 61–68

    Google Scholar 

  • D. Selmar R. Lieberei R. Biehl (1988) ArticleTitleMobilization and utilization of cyanogenic glycosides: the linustatin pathway Plant Physiol. 86 711–716

    Google Scholar 

  • D. Siritunga (2002) Generation of acyanogenic cassava (Manihot esculenta, Crantz): Transgenic approaches Ph. D. thesis The Ohio State University Columbus, OH

    Google Scholar 

  • D. Siritunga D. Arias-Garcon W. White R. Sayre (2004) ArticleTitleOver-expression of hydroxynitrile lyase in cassava roots accelerates cyanogenesis and detoxification Plant Biotech. J. 2 37–43

    Google Scholar 

  • D. Siritunga R. Sayre (2003) ArticleTitleGeneration of cyanogen-free transgenic cassava Planta 217 367–373 Occurrence Handle14520563

    PubMed  Google Scholar 

  • V. Sreeja N. Nagahara Q. Li M. Minami (2003) ArticleTitleNew aspects in pathogenesis of konzo: neural cell damage directly caused by linamarin contained in cassava (Manihot esculenta Crantz) Brit. J. Nutr. 90 467–472 Occurrence Handle12908909

    PubMed  Google Scholar 

  • T. Tylleskar R. Cooke M. Banea N. Poulter N. Bikangi H. Rosling (1992) ArticleTitleCassava cyanogens and konzo, an upper motor neuron disease found in Africa Lancet 339 208–211 Occurrence Handle1346173

    PubMed  Google Scholar 

  • W. White D. Arias-Garzon J. McMahon R.T. Sayre (1998) ArticleTitleCyanogenesis in cassava: the role of hydroxynitrile lyase in root cyanide production Plant Physiol. 116 1219–1225 Occurrence Handle9536038

    PubMed  Google Scholar 

  • W. White J. McMahon R. Sayre (1994) ArticleTitleRegulation of cyanogenesis in cassava Acta Hort. 375 69–78

    Google Scholar 

  • Zourelidou, M., Torres-Zabala, M., Smith, C. and Bevan, M. 2002. Storekeeper defines a new class of plant-specific DNA-binding proteins.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Sayre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siritunga, D., Sayre, R. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta). Plant Mol Biol 56, 661–669 (2004). https://doi.org/10.1007/s11103-004-3415-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-004-3415-9

Keywords

Navigation