Skip to main content
Log in

Calmodulin-like Proteins from Arabidopsis and Tomato are Involved in Host Defense Against Pseudomonas syringae pv. tomato

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Complex signal transduction pathways underlie the myriad plant responses to attack by pathogens. Ca2+ is a universal second messenger in eukaryotes that modulates various signal transduction pathways through stimulus-specific changes in its intracellular concentration. Ca2+-binding proteins such as calmodulin (CaM) detect Ca2+ signals and regulate downstream targets as part of a coordinated cellular response to a given stimulus. Here we report the characterization of a tomato gene (APR134) encoding a CaM-related protein that is induced in disease-resistant leaves in response to attack by Pseudomonas syringae pv. tomato. We show that suppression of APR134 gene expression in tomato (Solanum lycopersicum), using virus-induced gene silencing (VIGS), compromises the plant’s immune response. We isolated APR134-like genes from Arabidopsis, termed CML42 and CML43, to investigate whether they serve a functionally similar role. Gene expression analysis revealed that CML43 is rapidly induced in disease-resistant Arabidopsis leaves following inoculation with Pseudomonas syringae pv. tomato. Overexpression of CML43 in Arabidopsis accelerated the hypersensitive response. Recombinant APR134, CML42, and CML43 proteins all bind Ca2+in vitro. Collectively, our data support a role for CML43, and APR134 as important mediators of Ca2+-dependent signals during the plant immune response to bacterial pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CaM:

calmodulin

CBPs:

CaM-binding proteins

CML:

CaM-like

VIGS:

virus-induced gene silencing

References

  • G. Ali V. Reddy P. Lindgren J. Jakobek A. Reddy (2003) ArticleTitleDifferential expression of genes encoding calmodulin-binding proteins in response to bacterial pathogens and inducers of defense responses Plant Mol. Biol. 51 803–815 Occurrence Handle10.1023/A:1023001403794 Occurrence Handle1:CAS:528:DC%2BD3sXisFCqsb0%3D Occurrence Handle12777041

    Article  CAS  PubMed  Google Scholar 

  • R. Anandalakshmi R. Marathe X. Ge J.M. Herr SuffixJr. C. Mau A. Mallory G. Pruss L. Bowman V.B. Vance (2000) ArticleTitleA calmodulin-related protein that suppresses posttranscriptional gene silencing in plants Science 290 142–144 Occurrence Handle10.1126/science.290.5489.142 Occurrence Handle1:CAS:528:DC%2BD3cXnt1Chsbg%3D Occurrence Handle11021800

    Article  CAS  PubMed  Google Scholar 

  • M.J. Berridge M.D. Bootman H.L. Roderick (2003) ArticleTitleCalcium signalling: dynamics, homeostasis and remodelling Nat. Rev. Mol. Cell Biol. 4 517–529 Occurrence Handle10.1038/nrm1155 Occurrence Handle1:CAS:528:DC%2BD3sXltVWmsr8%3D Occurrence Handle12838335

    Article  CAS  PubMed  Google Scholar 

  • B. Blume T. Nürnberger N. Nass D. Scheel (2000) ArticleTitleReceptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley Plant Cell 12 1425–1440 Occurrence Handle10.1105/tpc.12.8.1425 Occurrence Handle1:CAS:528:DC%2BD3cXmsVyjsb4%3D Occurrence Handle10948260 Occurrence Handle149113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • J. Braam R.W. Davis (1990) ArticleTitleRain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis Cell 60 357–364 Occurrence Handle10.1016/0092-8674(90)90587-5 Occurrence Handle1:CAS:528:DyaK3cXhsFGgu78%3D Occurrence Handle2302732

    Article  CAS  PubMed  Google Scholar 

  • S. Clough A Bent (1998) ArticleTitleFloral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana Plant J. 16 735–743 Occurrence Handle10.1046/j.1365-313x.1998.00343.x Occurrence Handle1:STN:280:DyaK1M7mvVagsQ%3D%3D Occurrence Handle10069079

    Article  CAS  PubMed  Google Scholar 

  • S.J. Clough K.A. Fengler I.C. Yu B. Lippok R.K. Smith SuffixJr. A.F. Bent (2000) ArticleTitleThe Arabidopsis dnd1 ‘defense, no death’ gene encodes a mutated cyclic nucleotide-gated ion channel Proc. Natl. Acad. Sci. USA 97 9323–9328 Occurrence Handle10.1073/pnas.150005697 Occurrence Handle1:CAS:528:DC%2BD3cXls12ktrk%3D Occurrence Handle10900264

    Article  CAS  PubMed  Google Scholar 

  • W. Durrant O. Rowland P. Piedras K. Hammond-Kosack J. Jones (2000) ArticleTitlecDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles Plant Cell 12 963–977 Occurrence Handle10.1105/tpc.12.6.963 Occurrence Handle1:CAS:528:DC%2BD3cXkvVymtr8%3D Occurrence Handle10852940 Occurrence Handle149096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • S.K. Ekengren Y. Liu M. Schiff S.P. Dinesh-Kumar G.B. Martin (2003) ArticleTitleTwo MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato Plant J. 36 905–917 Occurrence Handle10.1046/j.1365-313X.2003.01944.x Occurrence Handle1:CAS:528:DC%2BD2cXmtl2jtQ%3D%3D Occurrence Handle14675454

    Article  CAS  PubMed  Google Scholar 

  • M. Garrigos S. Deschamps A. Viel S. Lund P. Champeil J.V. Moller M. le Maire (1991) ArticleTitleDetection of Ca2+-binding proteins by electrophoretic migration in the presence of Ca2+ combined with 45Ca2+ overlay of protein blots Anal. Biochem. 194 82–88 Occurrence Handle10.1016/0003-2697(91)90154-L Occurrence Handle1:CAS:528:DyaK3MXitVaqs7s%3D Occurrence Handle1831012

    Article  CAS  PubMed  Google Scholar 

  • K. Gellatly D. Lefebvre (1993) ArticleTitleIdentification of a cDNA clone coding for a novel calcium-binding protein from potato Plant Physiol. 101 1405–1406 Occurrence Handle10.1104/pp.101.4.1405 Occurrence Handle1:CAS:528:DyaK3sXksVelsLw%3D Occurrence Handle8310073 Occurrence Handle160671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • M. Grant I. Brown S. Adams M. Knight A. Ainslie J. Mansfield (2000) ArticleTitleThe RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death Plant J. 23 441–450 Occurrence Handle10.1046/j.1365-313x.2000.00804.x Occurrence Handle1:CAS:528:DC%2BD3cXms1eht7g%3D Occurrence Handle10972870

    Article  CAS  PubMed  Google Scholar 

  • F.Q. Guo M. Okamoto N.M. Crawford (2003) ArticleTitleIdentification of a plant nitric oxide synthase gene involved in hormonal signaling Science 302 100–103 Occurrence Handle10.1126/science.1086770 Occurrence Handle1:CAS:528:DC%2BD3sXnslSjs7o%3D Occurrence Handle14526079

    Article  CAS  PubMed  Google Scholar 

  • W. Heo S. Lee M. Kim J. Kim W. Chung H. Chun K. Lee C. Park H. Park J. Choi M.J. Cho (1999) ArticleTitleInvolvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses Proc. Natl. Acad. Sci. 96 766–771 Occurrence Handle10.1073/pnas.96.2.766 Occurrence Handle1:CAS:528:DyaK1MXmtlCqtA%3D%3D Occurrence Handle9892708

    Article  CAS  PubMed  Google Scholar 

  • J.L. Jakobek J.A. Smith-Becker P.B. Lindgren (1999) ArticleTitleA bean cDNA expressed during a hypersensitive reaction encodes a putative calcium-binding protein Mol. Plant-Microbe Inter. 12 712–719 Occurrence Handle10.1094/MPMI.1999.12.8.712 Occurrence Handle1:CAS:528:DyaK1MXkslKhtLk%3D

    Article  CAS  Google Scholar 

  • T. Keller H.G. Damude D. Werner P. Doerner R.A. Dixon C. Lamb (1998) ArticleTitleA plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs Plant Cell 10 255–266 Occurrence Handle9490748 Occurrence Handle143990 Occurrence Handle1:CAS:528:DyaK1cXhsF2mtrc%3D

    PubMed  PubMed Central  CAS  Google Scholar 

  • M. Kim R. Panstruga C. Elliott J. Müller A. Devoto H. Yoon H. Park M. Cho P. Schulze-Lefert (2002) ArticleTitleCalmodulin interacts with MLO protein to regulate defense against mildew in barley Nature 416 447–450 Occurrence Handle10.1038/416447a Occurrence Handle1:CAS:528:DC%2BD38XislamsbY%3D Occurrence Handle11919636

    Article  CAS  PubMed  Google Scholar 

  • E. King K. Ward D. Raney (1954) ArticleTitleTwo simple media for the demonstration of pyocyanin and flurescin J. Lab. Clin. Med. 44 301–307 Occurrence Handle13184240 Occurrence Handle1:STN:280:DyaG2c7gsVCisQ%3D%3D

    PubMed  CAS  Google Scholar 

  • J.V. Kus K. Zaton R. Sarkar R.K. Cameron (2002) ArticleTitleAge-related resistance in Arabidopsis is a developmentally regulated defense response to Pseudomonas syringae Plant Cell 14 479–490 Occurrence Handle10.1105/tpc.010481 Occurrence Handle1:CAS:528:DC%2BD38XisVKguro%3D Occurrence Handle11884688 Occurrence Handle152926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • C. Lamb J. Ryals E. Ward R. Dixon (1992) ArticleTitleEmerging strategies for enhancing crop resistance to microbial pathogens Biotechnology 10 1436–1445 Occurrence Handle1369021 Occurrence Handle1:CAS:528:DyaK3sXnslSjtQ%3D%3D

    PubMed  CAS  Google Scholar 

  • Y. Liu M. Schiff S. Dinesh-Kumar (2002a) ArticleTitleVirus-induced gene silencing in tomato Plant J. 31 777–786 Occurrence Handle10.1046/j.1365-313X.2002.01394.x Occurrence Handle1:CAS:528:DC%2BD38XotFyjsbo%3D

    Article  CAS  Google Scholar 

  • Y. Liu M. Schiff R. Marathe S. Dinesh-Kumar (2002b) ArticleTitleTobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus Plant J 30 415–429 Occurrence Handle10.1046/j.1365-313X.2002.01297.x Occurrence Handle1:CAS:528:DC%2BD38XltFaqsbg%3D

    Article  CAS  Google Scholar 

  • A.A. Ludwig T. Romeis J.D. Jones (2004) ArticleTitleCDPK-mediated signalling pathways: specificity and cross-talk J. Exp. Bot. 55 181–188 Occurrence Handle10.1093/jxb/erh008 Occurrence Handle1:CAS:528:DC%2BD2cXnslai Occurrence Handle14623901

    Article  CAS  PubMed  Google Scholar 

  • E. McCormack J. Braam (2003) ArticleTitleCalmodulins and related potential calcium sensors of Arabidopsis New Phytol. 159 585–598 Occurrence Handle10.1046/j.1469-8137.2003.00845.x Occurrence Handle1:CAS:528:DC%2BD3sXns1Shur8%3D

    Article  CAS  Google Scholar 

  • K. Mysore O. Crasta R. Tuori O. Folkerts P. Swirsky G.B. Martin (2002) ArticleTitleComprehensive transcript profiling of Pto- and Prf- mediated host defense responses to infection by Pseudomonas syringae pv. tomato Plant J. 32 299–315 Occurrence Handle10.1046/j.1365-313X.2002.01424.x Occurrence Handle1:CAS:528:DC%2BD38Xpt12msrs%3D Occurrence Handle12410809

    Article  CAS  PubMed  Google Scholar 

  • Z. Nimchuk T. Eulgem B.F. Holt SuffixIII J.L. Dangl (2003) ArticleTitleRecognition and response in the plant immune system Annu. Rev. Genet. 37 579–609 Occurrence Handle10.1146/annurev.genet.37.110801.142628 Occurrence Handle1:CAS:528:DC%2BD2cXhsFGrsQ%3D%3D Occurrence Handle14616074

    Article  CAS  PubMed  Google Scholar 

  • K.F. Pedley G.B. Martin (2003) ArticleTitleMolecular basis of Pto-mediated resistance to bacterial speck disease in tomato Annu. Rev. Phytopathol. 41 215–243 Occurrence Handle10.1146/annurev.phyto.41.121602.143032 Occurrence Handle1:CAS:528:DC%2BD3sXptFWlsLk%3D Occurrence Handle14527329

    Article  CAS  PubMed  Google Scholar 

  • V. Reddy G. Ali A. Reddy (2002) ArticleTitleGenes encoding calmodulin-binding proteins in the Arabidopsis genome J. Biol. Chem. 277 9840–9852 Occurrence Handle10.1074/jbc.M111626200 Occurrence Handle1:CAS:528:DC%2BD38XisVylsLo%3D Occurrence Handle11782485

    Article  CAS  PubMed  Google Scholar 

  • T. Romeis P. Piedras S. Zhang D.F. Klessig H. Hirt J.D. Jones (1999) ArticleTitleRapid Avr9- and Cf-9 -dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses Plant Cell 11 273–287 Occurrence Handle9927644 Occurrence Handle144176 Occurrence Handle1:CAS:528:DyaK1MXhsVyntLg%3D

    PubMed  PubMed Central  CAS  Google Scholar 

  • P. Ronald J. Salmeron F. Carland B. Staskawicz (1992) ArticleTitleThe cloned avirulence gene avrPto induces disease resistance in tomato cultivars containing the Pto resistance gene J. Bacteriol. 174 1604–1611 Occurrence Handle10.1128/jb.174.5.1604-1611.1992 Occurrence Handle1:CAS:528:DyaK38XhsVGnsr0%3D Occurrence Handle1537802 Occurrence Handle206556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • J. Sambrook E.F. Fritsch T. Maniatis (1989) Molecular Cloning: A Laboratory Manual Cold Spring Harbour Laboratory Press Cold Spring Harbor, NY

    Google Scholar 

  • D. Sanders J. Pelloux C. Brownie J. Harper (2002) ArticleTitleCalcium at the crossroads of signaling Plant Cell 14 S401–S417 Occurrence Handle10.1105/tpc.002899 Occurrence Handle1:CAS:528:DC%2BD38XksV2gsrw%3D Occurrence Handle12045291 Occurrence Handle151269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • W.A. Snedden H. Fromm (2001) ArticleTitleCalmodulin as a versatile calcium signal transducer in plants New Phytol. 151 35–66 Occurrence Handle10.1046/j.1469-8137.2001.00154.x Occurrence Handle1:CAS:528:DC%2BD3MXltFGkurc%3D

    Article  CAS  Google Scholar 

  • I.N. Talke D. Blaudez F.J. Maathuis D. Sanders (2003) ArticleTitleCNGCs: prime targets of plant cyclic nucleotide signalling? Trends Plant Sci 286–29 3

    Google Scholar 

  • W.L. Turner J.C. Waller B. Vanderbeld W.A. Snedden (2004) ArticleTitleCloning and characterization of two NAD kinases from Arabidopsis. Identification of a calmodulin binding isoform Plant Physiol 135 1243–1255 Occurrence Handle10.1104/pp.104.040428 Occurrence Handle1:CAS:528:DC%2BD2cXmtVOrt78%3D Occurrence Handle15247403 Occurrence Handle519044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Y. Tao Z. Xie W. Chen J. Glazebrook H. Chang B. Zhu G. Zou F. Katagiri (2003) ArticleTitleQuantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae Plant Cell 15 317–330 Occurrence Handle10.1105/tpc.007591 Occurrence Handle1:CAS:528:DC%2BD3sXhtlOmtLY%3D Occurrence Handle12566575 Occurrence Handle141204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • M. Whalen R. Innes A. Bent B. Staskawicz (1991) ArticleTitleIdentification of a Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean Plant Cell 3 49–59 Occurrence Handle10.1105/tpc.3.1.49 Occurrence Handle1:STN:280:DyaK38vgsVOntg%3D%3D Occurrence Handle1824334 Occurrence Handle159978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • H. Xu M. Heath (1998) ArticleTitleRole of calcium in signal transduction during the hypersensitive response caused by basidiospore-derived infection of the cowpea rust fungus Plant Cell 10 585–597 Occurrence Handle10.1105/tpc.10.4.585 Occurrence Handle1:CAS:528:DyaK1cXivFCrur0%3D Occurrence Handle9548984 Occurrence Handle144015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • H. Yamakawa I. Mitsuhara N. Ito S. Seo H. Kamada Y. Ohashi (2001) ArticleTitleTranscriptionally and post-transcriptionally regulated response of 13 calmodulin genes to tobacco mosaic virus-induced cell death and wounding in tobacco plant Eur. J. Biochem. 268 3916–3929 Occurrence Handle10.1046/j.1432-1327.2001.02301.x Occurrence Handle1:CAS:528:DC%2BD3MXlsVejsr4%3D Occurrence Handle11453984

    Article  CAS  PubMed  Google Scholar 

  • T. Yang B.W. Poovaiah (2002) ArticleTitleA calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants J Biol. Chem. 277 45049–45058 Occurrence Handle10.1074/jbc.M207941200 Occurrence Handle1:CAS:528:DC%2BD38Xosl2murs%3D Occurrence Handle12218065

    Article  CAS  PubMed  Google Scholar 

  • T. Yang B. Pooviah (2003) ArticleTitleCalcium/calmodulin-mediated signal network in plants Trends Plant Sci. 8 505–512 Occurrence Handle10.1016/j.tplants.2003.09.004 Occurrence Handle1:CAS:528:DC%2BD3sXnvFShsrY%3D Occurrence Handle14557048

    Article  CAS  PubMed  Google Scholar 

  • D. Zeidler U. Zahringer I. Gerber I. Dubery T. Hartung W. Bors P. Hutzler J. Durner (2004) ArticleTitleInnate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes Proc. Natl. Acad. Sci. USA. 101 15811–15816 Occurrence Handle10.1073/pnas.0404536101 Occurrence Handle1:CAS:528:DC%2BD2cXhtVWisLfO Occurrence Handle15498873

    Article  CAS  PubMed  Google Scholar 

  • R.E. Zielinski (2002) Preparation of recombinant plant calmodulin isoforms H.J. Vogel (Eds) Calcium-Binding␣Protein Protocols, Vol 1 Humana Press Totawa, NJ 143–149 Occurrence Handle10.1385/1-59259-183-3:143

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne A. Snedden.

Additional information

This work was supported by a research grant (WAS) and postgraduate scholarships (DC, SLD) from the Natural Science and Engineering Research Council of Canada, the National Science Foundation (IBN-0109633; GBM), and the Swedish Research Council (SKE).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiasson, D., Ekengren, S.K., Martin, G.B. et al. Calmodulin-like Proteins from Arabidopsis and Tomato are Involved in Host Defense Against Pseudomonas syringae pv. tomato. Plant Mol Biol 58, 887–897 (2005). https://doi.org/10.1007/s11103-005-8395-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-005-8395-x

Keywords

Navigation