Skip to main content
Log in

Arabidopsis DEMETER-LIKE proteins DML2 and DML3 are required for appropriate distribution of DNA methylation marks

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Cytosine DNA methylation is a stable epigenetic mark for maintenance of gene silencing across cellular divisions, but it is a reversible modification. Genetic and biochemical studies have revealed that the Arabidopsis DNA glycosylase domain-containing proteins ROS1 (REPRESSOR OF SILENCING 1) and DME (DEMETER) initiate erasure of 5-methylcytosine through a base excision repair process. The Arabidopsis genome encodes two paralogs of ROS1 and DME, referred to as DEMETER-LIKE proteins DML2 and DML3. We have found that DML2 and DML3 are 5-methylcytosine DNA glycosylases that are expressed in a wide range of plant organs. We analyzed the distribution of methylation marks at two methylated loci in wild-type and dml mutant plants. Mutations in DML2 and/or DML3 lead to hypermethylation of cytosine residues that are unmethylated or weakly methylated in wild-type plants. In contrast, sites that are heavily methylated in wild-type plants are hypomethylated in mutants. These results suggest that DML2 and DML3 are required not only for removing DNA methylation marks from improperly-methylated cytosines, but also for maintenance of high methylation levels in properly targeted sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

5-meC:

5-Methylcytosine

DME :

DEMETER

DML :

DEMETER-LIKE

MBP:

Maltose-binding protein

ROS1 :

REPRESSOR OF SILENCING 1

TDG:

Thymine DNA glycosylase

References

  • Agius F, Kapoor A, Zhu JK (2006) Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. Proc Natl Acad Sci USA 103:11796–11801

    Article  PubMed  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Bender J (2004) DNA methylation and epigenetics. Annu Rev Plant Physiol Plant Mol Biol 55:41–68

    CAS  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  PubMed  CAS  Google Scholar 

  • Boyko A, Kovalchuk I (2008) Epigenetic control of plant stress response. Environ Mol Mutagen 49:61–72

    Article  PubMed  CAS  Google Scholar 

  • Casadesus J, Low D (2006) Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol Rev 70:830–856

    Article  PubMed  CAS  Google Scholar 

  • Chan SW, Henderson IR, Jacobsen SE (2005) Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 6:351–360

    Article  PubMed  CAS  Google Scholar 

  • Choi C, Sano H (2007) Identification of tobacco genes encoding proteins possessing removal activity of 5-methylcytosines. Plant Biotechnology 24:339–344

    CAS  Google Scholar 

  • Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ, Goldberg RB, Jacobsen SE, Fischer RL (2002) DEMETER, a DNA glycosylase domain protein, Is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110:33–42

    Article  PubMed  CAS  Google Scholar 

  • Colot V, Rossignol JL (1999) Eukaryotic DNA methylation as an evolutionary device. Bioessays 21:402–411

    Article  PubMed  CAS  Google Scholar 

  • Esteller M (2005) Aberrant DNA methylation as a cancer-inducing mechanism. Annu Rev Pharmacol Toxicol 45:629–656

    Article  PubMed  CAS  Google Scholar 

  • Finnegan EJ, Genger RK, Peacock WJ, Dennis ES (1998) DNA methylation in plants. Annu Rev Plant Physiol Plant Mol Biol 49:223–247

    Article  PubMed  CAS  Google Scholar 

  • Frank D, Keshet I, Shani M, Levine A, Razin A, Cedar H (1991) Demethylation of CpG islands in embryonic cells. Nature 351:239–241

    Article  PubMed  CAS  Google Scholar 

  • Gallais R, Demay F, Barath P, Finot L, Jurkowska R, Le Guevel R, Gay F, Jeltsch A, Metivier R, Salbert G (2007) Dnmt 3a and 3b associate with the nuclear orphan receptor COUP-TFI during gene activation. Mol Endocrinol 21:2085–2098

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Ortiz MV, Ariza RR, Roldan-Arjona T (2001) An OGG1 orthologue encoding a functional 8-oxoguanine DNA glycosylase/lyase in Arabidopsis thaliana. Plant Mol Biol 47:795–804

    Article  PubMed  CAS  Google Scholar 

  • Gehring M, Huh JH, Hsieh TF, Penterman J, Choi Y, Harada JJ, Goldberg RB, Fischer RL (2006) DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell 124:495–506

    Article  PubMed  CAS  Google Scholar 

  • Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514

    Article  PubMed  CAS  Google Scholar 

  • Gong Z, Morales-Ruiz T, Ariza RR, Roldan-Arjona T, David L, Zhu JK (2002) ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111:803–814

    Article  PubMed  CAS  Google Scholar 

  • Hardeland U, Bentele M, Jiricny J, Schar P (2003) The versatile thymine DNA-glycosylase: a comparative characterization of the human, Drosophila and fission yeast orthologs. Nucleic Acids Res 31:2261–2271

    Article  PubMed  CAS  Google Scholar 

  • Hendrich B, Hardeland U, Ng HH, Jiricny J, Bird A (1999) The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature 401:301–304

    Article  PubMed  CAS  Google Scholar 

  • Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187:226–232

    Article  PubMed  CAS  Google Scholar 

  • Jost JP, Siegmann M, Sun L, Leung R (1995) Mechanisms of DNA demethylation in chicken embryos. Purification and properties of a 5-methylcytosine-DNA glycosylase. J Biol Chem 270:9734–9739

    Article  PubMed  CAS  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72:427–441

    Article  PubMed  CAS  Google Scholar 

  • Kress C, Thomassin H, Grange T (2001) Local DNA demethylation in vertebrates: how could it be performed and targeted? FEBS Lett 494:135–140

    Article  PubMed  CAS  Google Scholar 

  • Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3:662–673

    Article  PubMed  CAS  Google Scholar 

  • Li YQ, Zhou PZ, Zheng XD, Walsh CP, Xu GL (2007) Association of Dnmt3a and thymine DNA glycosylase links DNA methylation with base-excision repair. Nucleic Acids Res 35:390–400

    Article  PubMed  CAS  Google Scholar 

  • Lippman Z, May B, Yordan C, Singer T, Martienssen R (2003) Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. PLoS Biol 1: E67

    Article  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔC T method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Morales-Ruiz T, Ortega-Galisteo AP, Ponferrada-Marin MI, Martinez-Macias MI, Ariza RR, Roldan-Arjona T (2006) DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases. Proc Natl Acad Sci USA 103:6853–6858

    Article  PubMed  CAS  Google Scholar 

  • Neddermann P, Gallinari P, Lettieri T, Schmid D, Truong O, Hsuan JJ, Wiebauer K, Jiricny J (1996) Cloning and expression of human G/T mismatch-specific thymine-DNA glycosylase. J Biol Chem 271:12767–12774

    Article  PubMed  CAS  Google Scholar 

  • Penterman J, Uzawa R, Fischer RL (2007a) Genetic interactions between DNA demethylation and methylation in Arabidopsis. Plant Physiol 145:1549–1557

    Article  PubMed  CAS  Google Scholar 

  • Penterman J, Zilberman D, Huh JH, Ballinger T, Henikoff S, Fischer RL (2007b) DNA demethylation in the Arabidopsis genome. Proc Natl Acad Sci USA 104:6752–6757

    Article  PubMed  CAS  Google Scholar 

  • Riggs AD (1975) X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 14:9–25

    Article  PubMed  CAS  Google Scholar 

  • Roldan-Arjona T, Garcia-Ortiz MV, Ruiz-Rubio M, Ariza RR (2000) cDNA cloning, expression and functional characterization of an Arabidopsis thaliana homologue of the Escherichia coli DNA repair enzyme endonuclease III. Plant Mol Biol 44:43–52

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Kent R, Bence N, Britt AB (1997) Developmental expression of a DNA repair gene in Arabidopsis. Mutat Res 384:145–156

    PubMed  CAS  Google Scholar 

  • Soppe WJ, Jacobsen SE, Alonso-Blanco C, Jackson JP, Kakutani T, Koornneef M, Peeters AJ (2000) The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell 6:791–802

    Article  PubMed  CAS  Google Scholar 

  • Thayer MM, Ahern H, Xing D, Cunningham RP, Tainer JA (1995) Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure. EMBO J 14:4108–4120

    PubMed  CAS  Google Scholar 

  • Wilson GG, Murray NE (1991) Restriction and modification systems. Annu Rev Genet 25:585–627

    Article  PubMed  CAS  Google Scholar 

  • Wolffe AP, Jones PL, Wade PA (1999) DNA demethylation. Proc Natl Acad Sci USA 96:5894–5896

    Article  PubMed  CAS  Google Scholar 

  • Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340

    Article  PubMed  CAS  Google Scholar 

  • Zhu B, Zheng Y, Angliker H, Schwarz S, Thiry S, Siegmann M, Jost JP (2000a) 5-Methylcytosine DNA glycosylase activity is also present in the human MBD4 (G/T mismatch glycosylase) and in a related avian sequence. Nucleic Acids Res 28:4157–4165

    Article  PubMed  CAS  Google Scholar 

  • Zhu B, Zheng Y, Hess D, Angliker H, Schwarz S, Siegmann M, Thiry S, Jost JP (2000b) 5-methylcytosine-DNA glycosylase activity is present in a cloned G/T mismatch DNA glycosylase associated with the chicken embryo DNA demethylation complex. Proc Natl Acad Sci USA 97:5135–5139

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Kapoor A, Sridhar VV, Agius F, Zhu JK (2007) The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in Arabidopsis. Curr Biol 17:54–59

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Ministerio de Educación y Ciencia (Grant BFU2004-05303) and Junta de Andalucía (CVI-301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Roldán-Arjona.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 10 kb)

(PDF 12 kb)

(PDF 9 kb)

(PDF 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortega-Galisteo, A.P., Morales-Ruiz, T., Ariza, R.R. et al. Arabidopsis DEMETER-LIKE proteins DML2 and DML3 are required for appropriate distribution of DNA methylation marks. Plant Mol Biol 67, 671–681 (2008). https://doi.org/10.1007/s11103-008-9346-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9346-0

Keywords

Navigation