Skip to main content
Log in

Identification, cloning and characterization of a GDSL lipase secreted into the nectar of Jacaranda mimosifolia

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The presence and function of several proteins secreted into floral nectars has been described in recent years. Here we report the presence of at least eight distinct proteins secreted into the floral nectar of the tropical tree Jacaranda mimosifolia (Bignoniaceae). Steps were initiated to identify and characterize these proteins in order to determine potential functions. The N-terminal sequence of the major Jacaranda nectar protein, JNP1, at 43 kDa contained similarity with members of the plant GDSL lipase/esterase gene family. Based upon this sequence, a full-length cDNA was isolated and predicted to encode a mature protein of 339 amino acids with a molecular mass of 37 kDa. Both raw nectar and heterologously expressed JNP1 displayed lipase/esterase activities. Interestingly, J. mimosifolia flowers produce an opaque, white colored nectar containing spherical, lipophilic particles approximately 5 μm in diameter and smaller. GS-MS analysis also identified the accumulation of free fatty acids within the nectar. It is proposed that JNP1 hydrolyzes Jacaranda nectar lipids with the concomitant release of free fatty acids. Potential functions of JNP1 in relation to pollinator attraction and prevention of microbial growth within nectar are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

JNP1:

Jacaranda nectar protein 1

PNB:

Para-nitrophenyl butyrate

SDS PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

GC-MS:

Gas chromatography-mass spectrometry

RT PCR:

Reverse transcriptase polymerase chain reaction

References

  • Akoh CC, Lee GC, Liaw YC, Huang TH, Shaw JF (2004) GDSL family of serine esterases/lipases. Prog Lipid Res 43:534–552

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Baker H, Baker I (1973) Amino acids in nectar and their evolutionary significance. Nature 241:543–545

    Article  CAS  Google Scholar 

  • Baker H, Baker I (1975) Studies of nectar-constitution and pollinator–plant coevolution. In: Gilbert LE, Raven PH (eds) Coevolution of animals and plants. University of Texas Press, Austin, TX, pp 126–152

    Google Scholar 

  • Baker I, Baker HG (1976) Analyses of amino acids in flower nectars of hybrids and their parents, with phylogenetic implications. New Phytol 76:87–98

    Article  Google Scholar 

  • Baker H, Baker I (1983) A brief historical review of chemistry of floral nectar. In: Bentley BL (ed) The biology of nectaries. Columbia University Press, New York, pp 126–152

    Google Scholar 

  • Batra LR, Batra SWT, Bohart GE (1973) The mycoflora of domesticated and wild bees (Apoidea). Mycopathol Mycol Appl 49:13–44

    Article  Google Scholar 

  • Buchmann SL (1987) The ecology of oil flowers and their bees. Ann Rev Ecol Syst 18:343–369

    Article  Google Scholar 

  • Carter C, Thornburg RW (2000) Tobacco nectarin I. Purification and characterization as a germin-like, manganese superoxide dismutase implicated in the defense of floral reproductive tissues. J Biol Chem 275:36726–36733

    Article  PubMed  CAS  Google Scholar 

  • Carter C, Thornburg RW (2004a) Is the nectar redox cycle a floral defense against microbial attack? Trends Plant Sci 9:320–324

    Article  PubMed  CAS  Google Scholar 

  • Carter CJ, Thornburg RW (2004b) Tobacco nectarin III is a bifunctional enzyme with monodehydroascorbate reductase and carbonic anhydrase activities. Plant Mol Biol 54:415–425

    Article  PubMed  CAS  Google Scholar 

  • Carter CJ, Thornburg RW (2004c) Tobacco nectarin V is a flavin-containing berberine bridge enzyme-like protein with glucose oxidase activity. Plant Physiol 134:460–469

    Article  PubMed  CAS  Google Scholar 

  • Carter C, Graham RA, Thornburg RW (1999) Nectarin I is a novel, soluble germin-like protein expressed in the nectar of Nicotiana sp. Plant Mol Biol 41:207–216

    Article  PubMed  CAS  Google Scholar 

  • Carter C, Healy R, O’Tool NM, Naqvi SM, Ren G, Park S, Beattie GA, Horner HT, Thornburg RW (2007) Tobacco nectaries express a novel NADPH oxidase implicated in the defense of floral reproductive tissues against microorganisms. Plant Physiol 143:389–399

    Article  PubMed  CAS  Google Scholar 

  • CRC Handbook of Chemistry and Physics (2004) In: Lide, DR. (ed), CRC Press, Boca Raton

  • Dalrymple BP, Cybinski DH, Layton I, McSweeney CS, Xue GP, Swadling YJ, Lowry JB (1997) Three Neocallimastix patriciarum esterases associated with the degradation of complex polysaccharides are members of a new family of hydrolases. Microbiology 143:2605–2614

    Article  PubMed  CAS  Google Scholar 

  • Deans SG, Waterman PG (1993) Biological activity of volatile oils. In: Hay RKM, Waterman PG (eds) Volatile oil crops: their biology, biochemistry, and production. Longman Scientific and Technical, Essex, England, pp 97–111

    Google Scholar 

  • Deinzer M, Thomson P, Burgett D, Isaacson D (1977) Pyrrolizidine alkaloids: their occurrence in honey from tansy ragwort. Science 195:497–499

    Article  PubMed  CAS  Google Scholar 

  • Dunford C, Cooper R, Molan P (2000) The use of honey in wound management. Nursing Standard 15:63–68

    PubMed  CAS  Google Scholar 

  • Ecroyd CE, Franich RA, Kroese HW, Steward D (1995) Volatile constituents of Cactylanthus taylorii flower nectar in relation to flower pollination and browsing by animals. Phytochemistry 40:1387–1389

    Article  CAS  Google Scholar 

  • Ferreres F, Andrade P, Gil MI, Tomas Barberan FA (1996) Floral nectar phenolics as biochemical markers for the botanical origin of heather honey. Z Lebensm Unters Forsch 202:40–44

    Article  CAS  Google Scholar 

  • Fiehn O, Kopka J, Trethewey RN, Willmitzer L (2000) Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal Chem 72:3573–3580

    Article  PubMed  CAS  Google Scholar 

  • Galetto L (1994) Nectary structure and nectar characteristics in some Bignoniaceae. Plant System Evol 196:1615–6110

    Google Scholar 

  • Griebel C, Hess G (1990) The vitamin C content of flower nectar of certain Labiatae. Z Unters Lebensm 79:168–171

    Article  Google Scholar 

  • Heinrich G (1989) Analysis of cations in nectars by means of a laser microprobe mass analyser (LAMMA). Beitr Biol Pflanz 64:293–308

    Google Scholar 

  • Hildebrand EM (1937) The blossomblight phase of fire blight, and methods of control. Cornell Univ Agric Exp Station Mem 207:1–40

    Google Scholar 

  • Hong JK, Choi HW, Hwang IS, Kim DS, Kim NH, Choi DS, Kim YJ, Hwang BK (2008) Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance. Planta 227:539–558

    Article  PubMed  CAS  Google Scholar 

  • Hopkins CY, Jevans AW, Bock R (1969) Occurrence of octadecatrans-2,cis-9,cis-12 trienoic acid in pollen attractive to the honey bee. Can J Biochem 47:433–436

    Article  PubMed  CAS  Google Scholar 

  • Jaikaran AS, Kennedy TD, Dratewka-Kos E, Lane BG (1990) Covalently bonded and adventitious glycans in germin. J Biol Chem 265(21):12503–12512

    PubMed  CAS  Google Scholar 

  • Kevan PG, Eisikowitch D, Fowle S, Thomas K (1988) Yeast-contaminated nectar and its effects on bee foraging. J Apicult Res 27:26–29

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lepage M, Boch R (1968) Pollen lipids attractive to honeybees. Lipids 3:530–534

    Article  PubMed  CAS  Google Scholar 

  • Li J, Derewenda U, Dautzer Z, Smith S, Derewenda ZS (2000) Crystal structure of the Escherichia coli thioesterase II, a homolog of the human Nef binding enzyme. Nat Struct Biol 7:555–559

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Gonzalez JE, Willis LB, Walker GC (1998) A novel screening method for isolating exopolysaccharide-deficient mutants. Appl Environ Microbiol 64:4600–4602

    PubMed  CAS  Google Scholar 

  • Molgaard A, Kauppinen S, Larsen S (2000) Rhamnogalacturonan acetylesterase elucidates the structure and function of a new family of hydrolases. Structure 8:373–383

    Article  PubMed  CAS  Google Scholar 

  • Naqvi SM, Harper A, Carter C, Ren G, Guirgis A, York WS, Thornburg RW (2005) Nectarin IV, a potent endoglucanase inhibitor secreted into the nectar of ornamental tobacco plants. Isolation, cloning, and characterization. Plant Physiol 139:1389–1400

    Article  PubMed  CAS  Google Scholar 

  • Oh IS, Park AR, Bae MS, Kwon SJ, Kim YS, Lee JE, Kang NY, Lee S, Cheong H, Park OK (2005) Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17:2832–2847

    Article  PubMed  CAS  Google Scholar 

  • Peumans WJ, Smeets K, Van Nerum K, Van Leuven F, Van Damme EJ (1997) Lectin and alliinase are the predominant proteins in nectar from leek (Allium porrum L.) flowers. Planta 201:298–302

    Article  PubMed  CAS  Google Scholar 

  • Pleasants JM, Chaplin SJ (1983) Nectar production rates of Asclepias quadrifolia: causes and consequences of individual variation. Oecologia 59:232–238

    Article  Google Scholar 

  • Purdy RE, Kolattukudy PE (1973) Depolymerization of a hydroxy fatty acid biopolymer, cutin, by an extracellular enzyme from Fusarium solani f. pisi: isolation and some properties of the enzyme. Arch Biochem Biophys 159:61–69

    Article  PubMed  CAS  Google Scholar 

  • Roshchina VV, Roshchina VD (1993) The excretory function of higher plants. Springer-Verlag, New York

    Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning. Cold Spring Harbor Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sommer P, Bormann C, Gotz F (1997) Genetic and biochemical characterization of a new extracellular lipase from Streptomyces cinnamomeus. Appl Environ Microbiol 63:3553–3560

    PubMed  CAS  Google Scholar 

  • Taipalensuu J, Falk A, Rask L (1996) A wound- and methyl jasmonate-inducible transcript coding for a myrosinase-associated protein with similarities to an early nodulin. Plant Physiol 110:483–491

    Article  PubMed  CAS  Google Scholar 

  • Tholl D, Chen F, Petri J, Gershenzon J, Pichersky E (2005) Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J 42:757–771

    Article  PubMed  CAS  Google Scholar 

  • Thornburg RW, Carter C, Powell A, Mittler R, Rizhsky L, Horner HT (2003) A major function of the tobacco floral nectary is defense against microbial attack. Plant Syst Evol 238:211–218

    Google Scholar 

  • Upton C, Buckley JT (1995) A new family of lipolytic enzymes? Trends Biochem Sci 20:178–179

    Article  PubMed  CAS  Google Scholar 

  • Vitale A, Chrispeels MJ (1992) Sorting of proteins to the vacuoles of plant cells. Bioessays 14:151–160

    Article  PubMed  Google Scholar 

  • Vogel S (1969) Flowers offering fatty oil instead of nectar. In: Abstracts XIth International Botany Congress, Seattle, WA

  • Zhang Z, Ober JA, Kliebenstein DJ (2006) The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell 18:1524–1536

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clay Carter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kram, B.W., Bainbridge, E.A., Perera, M.A.D.N. et al. Identification, cloning and characterization of a GDSL lipase secreted into the nectar of Jacaranda mimosifolia . Plant Mol Biol 68, 173–183 (2008). https://doi.org/10.1007/s11103-008-9361-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9361-1

Keywords

Navigation