Skip to main content
Log in

Overexpression of a tea flavanone 3-hydroxylase gene confers tolerance to salt stress and Alternaria solani in transgenic tobacco

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Flavan-3-ols are the major flavonoids present in tea (Camellia sinensis) leaves. These are known to have antioxidant and free radical scavenging properties in vitro. Flavanone 3-hydroxylase is considered to be an important enzyme of flavonoid pathway leading to accumulation of flavan-3-ols in tea. Expression analysis revealed the upregulation in transcript levels of C. sinensis flavanone 3-hydroxylase (CsF3H) encoding gene under salt stress. In this study, the biotechnological potential of CsF3H was evaluated by gene overexpression in tobacco (Nicotiana tabacum cv. Xanthi). Overexpression of CsF3H cDNA increased the content of flavan-3-ols in tobacco and conferred tolerance to salt stress and fungus Alternaria solani infection. Transgenic tobaccos were observed for increase in primary root length, number of lateral roots, chlorophyll content, antioxidant enzyme expression and their activities. Also, they showed lesser malondialdehyde content and electrolyte leakage compared to control tobacco plants. Further, transgenic plants produced higher degree of pectin methyl esterification via decreasing pectin methyl esterase (PME) activity in roots and leaves under unstressed and salt stressed conditions. The effect of flavan-3-ols on pectin methyl esterification under salt stressed conditions was further validated through in vitro experiments in which non-transgenic (wild) tobacco seedlings were exposed to salt stress in presence of flavan-3-ols, epicatechin and epigallocatechin. The in vitro exposed seedlings showed similar trend of increase in pectin methyl esterification through decreasing PME activity as observed in CsF3H transgenic lines. Taken together, overexpression of CsF3H provided tolerance to salt stress and fungus A. solani infection to transgenic tobacco through improved antioxidant system and enhanced pectin methyl esterification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahmed S, Wang NZ, Lalonde M, Goldberg VM, Haqqi TM (2004) Green tea polyphenol epigallocatechin-3-gallate (EGCG) differentially inhibits interleukin-1 beta-induced expression of matrix metalloproteinase-1 and-13 in human chondrocytes. J Pharmacol Exp Ther 308:767–773

    Article  CAS  PubMed  Google Scholar 

  • An SH, Sohn KH, Choi HW, Hwang IS, Lee SC, Hwang BK (2008) Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance. Planta 228:61–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ashry NA, Mohamed HI (2011) Impact of secondary metabolites and related enzymes in flax resistance and or susceptibility to powdery mildew. World J Agric Sci 7:78–85

  • Asthir B, Koundal A, Bains NS, Mann SK (2010) Stimulation of antioxidative enzymes and polyamines during stripe rust disease of wheat. Biol Plant 54:329–333

  • Balasaravanan T, Pius PK, Raj Kumar R, Muraleedharan N, Shasany AK (2003) Genetic diversity among south Indian tea germplasm (Camellia sinensis, C. assamica and C. assamica spp. lasiocalyx) using AFLP markers. Plant Sci 165:365–372

    Article  CAS  Google Scholar 

  • Bartolo ME, Wallner SJ, Ketchum RE (1987) Comparison of freezing tolerance in cultured plant cells and their respective protoplasts. Cryobiol 24:53–57

    Article  Google Scholar 

  • Bosch M, Hepler PK (2006) Silencing of the tobacco pollen pectin methylesterase NtPPME1 results in retarded in vivo pollen tube growth. Planta 223:736–745

    Article  CAS  PubMed  Google Scholar 

  • Boudart G, Lafitte C, Barthe JP, Frasez D, Esquerré-Tugayé MT (1998) Differential elicitation of defense responses by pectic fragments in bean seedlings. Planta 206:86–94

    Article  CAS  Google Scholar 

  • Bressan RA, Handa AK, Handa S, Hasegawa PM (1982) Growth and water relations of cultured tomato cells after adjustment to low external water potentials. Plant Physiol 70:1303–1309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Britsch L, Grisebach H (1986) Purification and characterization of (2S)-flavanone 3-hydroxylase from Petunia hybrida. Eur J Biochem 156:569–577

    Article  CAS  PubMed  Google Scholar 

  • Chaerani R, Voorrips R (2006) Tomato early blight (Alternaria solani): the pathogen, genetics, and breeding for resistance. J Genet Plant Pathol 72:335–347

    Article  Google Scholar 

  • Colzi I, Arnetoli M, Gallo A, Doumett S, Bubba MD, Pignattelli S, Gabbrielli R, Gonnelli C (2012) Copper tolerance strategies involving the root cell wall pectins in Silene paradoxa L. Environ Exp Bot 78:91–98

    Article  CAS  Google Scholar 

  • Davies KM, Schwinn KE, Deroles SC, Manson DG, Lewis DH, Bloor SJ, Bradley JM (2003) Enhancing anthocyanin production by altering competition for substrate between flavonol synthase and dihydroflavonol 4-reductase. Euphytica 131:259–268

    Article  CAS  Google Scholar 

  • Deluc L, Bogs J, Walker AR, Ferrier T, Decendit A, Merillon J-M, Robinson SP, Barrieu F (2008) The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. Plant Physiol 147:2041–2053

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Derbyshire P, McCann MC, Roberts K (2007) Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level. BMC Plant Biol 17:7–31

    Google Scholar 

  • Dixon RA, Pasinetti GM (2010) Flavonoids and isoflavonoids: from plant biology to agriculture and neuroscience. Plant Physiol 154:453–457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Downie B, Dirk LM, Hadfield KA, Wilkins TA, Bennett AB, Bradford KJ (1998) A gel diffusion assay for quantification of pectin methylesterase activity. Anal Biochem 264:149–157

    Article  CAS  PubMed  Google Scholar 

  • Garg AK, Kim J-K, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hernandez JA, Almansa MS (2002) Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant 115:251–257

    Article  CAS  PubMed  Google Scholar 

  • Hernandez JA, Jimenez A, Mullineaux PM, Sevilla F (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environ 23(8):853–862

  • Hernández I, Alegre L, Van Breusegem F, Munné-Bosch S (2009) How relevant are flavonoids as antioxidants in plants? Trends Plant Sci 14:125–132

    Article  PubMed  Google Scholar 

  • Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eicholtz D, Rogers SG, Fraley RT (1985) A simple method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Hung SH, Yu CW, Lin CH (2005) Hydrogen peroxide functions as a stress signal in plants. Bot Bull Acad Sin 46:1–10

    CAS  Google Scholar 

  • Ivanov S, Miteva L, Alexieva V, Karjin H, Karanov E (2005) Alterations in some oxidative parameters in susceptible and resistant wheat plants infected with Puccinia recondita f. Sp. Tritici. J Plant Physiol 162:275–279

  • Jarvis MC, Briggs SPH, Knox JP (2003) Intercellular adhesion and cell separation in plants. Plant Cell Environ 26:977–989

    Article  Google Scholar 

  • Jayakumar K, Jaleel CA, Vijayarengan P (2007) Changes in growth, biochemical constituents and antioxidant potentials in radish (Raphanus sativus L.) under cobalt stress. Turk J Biol 31:127–136

    CAS  Google Scholar 

  • Jbir N, Chaibi W, Amar S, Jemmali A, Ayadi A (2001) Root growth and lignifications of two wheat species differing in their sensitivity to NaCl in response to salt stress. C R Acad Sci Paris 324:863–868

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants and natural phytoplankton. Biochem Physiol Pflanz 165:191–194

    Google Scholar 

  • Jiang LX, Yang SL, Xie LF, Puah CS, Zhang XQ, Yang WC, Sundaresan V, Ye D (2005) VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17:584–596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kars I, Krooshof GH, Wagemakers L, Joosten R, Benen JA, Van Kan JA (2005) Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris. Plant J 43:213–225

    Article  CAS  PubMed  Google Scholar 

  • Kovacs V, Pál M, Vida G, Szalai G, Janda T (2011) Effect of powdery mildew infection on the antioxidant enzyme activities in different lines of thatcher-based wheat. Acta Biol Szegedien 55:99–100

  • Kubasek WL, Shirley BW, McKillop A, Goodman HM, Briggs W, Ausubel FM (1992) Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedlings. Plant Cell 4:1229–1236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar S, Singla-Pareek SL, Reddy MK, Sopory SK (2003) Glutathione: biosynthesis, homeostasis and its role in abiotic stresses. J Plant Biol 30:179–187

    Google Scholar 

  • Lewis KC, Selzer T, Shahar C, Udi Y, Tworowski D, Sagi I (2008) Inhibition of pectin methyl esterase activity by green tea catechins. Phytochemistry 69:2586–2592

    Article  CAS  PubMed  Google Scholar 

  • Lin YL, Juan IM, Chen YL, Liang YC, Lin JK (1996) Composition of polyphenols in fresh tea leaves and association of their oxygen-radical-absorbing capacity with antiproliferative action in fibroblast cells. J Agric Food Chem 44:1387–1394

    Article  CAS  Google Scholar 

  • Lionetti V, Raiola A, Camardella L, Giovane A, Obel N, Pauly M, Favaron F, Cervone F, Bellincampi D (2007) Overexpression of pectin methylesterase inhibitors in arabidopsis restricts fungal infection by Botrytis cinerea. Plant Physiol 143:1871–1880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lopez-Berenguer C, Martınez-Ballesta MDC, Moreno DA, Carvajal M, Garcia-Viguera C (2009) Growing hardier crops for better health: salinity tolerance and the nutritional value of broccoli. J Agri Food Chem 57:572–578

  • Liu JH, Nada K, Honda C, Kitashiba H, Wen XP, Pang XM, Moriguchi T (2006) Polyamine biosynthesis of apple callus under salt stress: importance of the arginine decarboxylase pathway in stress response. J Exp Bot 57:2589–2599

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Mahajan M, Ahuja PS, Yadav SK (2011) Post transcriptional silencing of flavonol synthase mRNA in tobacco leads to fruits with arrested seed set. PLoS One 6(1–12):e28315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mahajan M, Singh R, Gulati A, Yadav SK (2012) Increase in flavan-3-ols by silencing flavonol synthase mRNA affects the transcript expression and activity levels of antioxidant enzymes in tobacco. Plant Biol 14:725–733

    Article  CAS  Google Scholar 

  • Mamati GE, Liang YR, Lu JL (2006) Expression of basic genes involved in tea polyphenol synthesis in relation to accumulation of catechins and total tea polyphenols. J Sci Food Agric 86:459–464

    Article  CAS  Google Scholar 

  • Marty P, Jouan B, Bertheau Y, Vian B, Goldberg R (1997) Charge density in stem cell walls of Solanum tuberosum genotypes and susceptibility to blackleg. Phytochemistry 44:1435–1441

    Article  CAS  Google Scholar 

  • Micheli F, Sundberg B, Goldberg R, Richard L (2000) Radial distribution pattern of pectin methylesterases across the cambial region of hybrid aspen at activity and dormancy. Plant Physiol 124:191–199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277

    Article  CAS  PubMed  Google Scholar 

  • Morre DJ, Morre DM, Sun H, Cooper R, Chang J, Janle EM (2003) Tea catechin synergies in inhibition of cancer cell, proliferation and of a cancer specific cell surface oxidase (ECTO-NOX). Pharmacol Toxicol (Cph) 92:234–241

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Murai M, Yoshida S (1998) Evidence for the cell wall involvement in temporal changes in freezing tolerance of Jerusalem artichoke (Helianthus tuberosus L.) tubers during cold acclimation. Plant Cell Physiol 39:97–105

    Article  CAS  PubMed  Google Scholar 

  • Muscolo A, Sidari M, Panuccio MR (2003) Tolerance of kikuyu grass to long term salt stress is associated with induction of antioxidant defenses. Plant Growth Regul 41:57–62

    Article  CAS  Google Scholar 

  • Nakatsuka T, Abe Y, Kakizaki Y, Yamamura S, Nishihara M (2007) Production of red-flowered plants by genetic engineering of multiple flavonoid biosynthetic genes. Plant Cell Rep 26:1951–1959

    Article  CAS  PubMed  Google Scholar 

  • Nash AF, Gardner R (1988) Heritability of tomato early blight resistance derived from Lycopersicon hirsutum. J Am Soc Hortic Sci 113:264–268

    Google Scholar 

  • Nielsen K, Deroles SC, Markham KR, Bradley MJ, Podivinsky E, Manson D (2002) Antisense flavanol synthase alters co-pigmentation and flower colour in lisianthus. Mol Breed 9:615–622

    Article  Google Scholar 

  • Orsini F, Cascone P, De Pascale S, Barbieri G, Corrado G, Rao R, Maggio A (2010) Systemin-dependent salinity tolerance in tomato: evidence of specific convergence of abiotic and biotic stress responses. Physiol Plant 138:10–21

    Article  CAS  PubMed  Google Scholar 

  • Parre E, Geitmann A (2005) Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. Planta 220:582–592

    Article  CAS  PubMed  Google Scholar 

  • Persson I, Josefsson AL, Persson MK, Andersson RGG (2006) Tea flavanols inhibit angiotensin-converting enzyme activity and increase nitric oxide production in human endothelial cells. J Phar Pharmacol 58:1139–1144

    Article  CAS  Google Scholar 

  • Pilling J, Willmitzer L, Bucking H, Fisahn J (2004) Inhibition of a ubiquitously expressed pectin methyl esterase in Solanum tuberosum L. affects plant growth, leaf growth polarity, and ion partitioning. Planta 219:32–40

    Article  CAS  PubMed  Google Scholar 

  • Punyasiri PAN, Abeysinghe ISB, Kumar V, Treutter D, Duy D, Gosch C, Martens S, Forkmann G, Fischer TC (2004) Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways. Arch Biochem Biophys 431:22–30

    Article  CAS  PubMed  Google Scholar 

  • Queslati S, Karray BN, Attia H, Rabhi M, Ksouri R, Lachaal M (2010) Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress. Acta Physiol Plant 32:289–296

  • Rabino I, Mancinelli AL (1986) Light, temperature, and anthocyanin production. Plant Physiol 81:922–924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raiola A, Camardella L, Giovane A, Mattei B, De Lorenzo G, Cervone F, Bellincampi D (2004) Two Arabidopsis thaliana genes encode functional pectin methylesterase inhibitors. FEBS Lett 557:199–203

    Article  CAS  PubMed  Google Scholar 

  • Rice-Evans CA, Millier NJ, Paganga G (1995) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    Article  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:2152–2159

    Article  Google Scholar 

  • Sairam RK, Srivastava GC, Agarwal S, Meena RC (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol Plant 49:85–91

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: A Laboratory Manual. 2nd edn. New York: Cold Spring Harbor Press

  • Sekman AH, Turkana I, Takiob S (2007) Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritime and salt-sensitive Plantago media. Physiol Planta 131:399–411

    Article  Google Scholar 

  • Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001) Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiol Planta 112:487–494

    Article  CAS  Google Scholar 

  • Sharma V, Gulati A, Ravindranath SD, Kumar V (2005) A simple and convenient method for analysis of tea biochemicals by reverse phase HPLC. J Food Compos Anal 18:583–594

    Article  CAS  Google Scholar 

  • Singh HP, Ravindranath SD, Singh C (1999) Analysis of tea shoot catechins: spectrophotometric quantitation and selective visualization of two-dimensional paper chromatograms using diazotized sulfanilamide. J Agric Food Chem 47:1041–1045

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Raizada J, Bhardwaj P, Ghawana S, Rani A, Singh H, Kaul K, Kumar S (2004) 26S rRNAbased internal control gene primer pair for reverse transcription-polymerase chain reaction based quantitative expression studies in diverse plant species. Anal Biochem 335:330–333

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Rani A, Kumar S, Sood P, Mahajan M, Yadav S, Singh B, Ahuja PS (2008) An early gene of the flavonoid pathway, flavanone 3-hydroxylase, exhibits a positive relationship with the concentrations of catechins in tea (Camellia sinensis). Tree Physiol 28:1349–1356

    Article  CAS  PubMed  Google Scholar 

  • Solecka D, Ebrowsk JZ, Kacperska A (2008) Are pectins involved in cold acclimation and de-acclimation of winter oil-seed rape plants? Ann Bot 101:521–530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Storey R (1995) Salt tolerance, ion relations and the effects of root medium on the response of Citrus to salinity. Aust J Plant Physiol 22:101–114

    Article  CAS  Google Scholar 

  • Takamaha U (1983) Suppression of lipid photoperoxidation by quercetin and its glycosides in spinach chloroplasts. Photochem Photo biol 38:363–367

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wen FS, Zhu YM, Hawes MC (1999) Effect of pectin methylesterase gene expression on pea root development. Plant Cell 11:1129–1140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wietholter N, Graessner B, Mierau M, Mort AJ, Moerschbacher BM (2003) Differences in the methyl ester distribution of homogalacturonans from near-isogenic wheat lines resistant and susceptible to the wheat stem rust fungus. Mol Plant Microbe Interact 16:945–952

    Article  PubMed  Google Scholar 

  • Willats WGT, Orfila C, Limberg G, Buchholt HC, van Alebeek G, Voragen AGJ, Marcus SE, Christensen T, Mikkelsen JD, Murray BS, Knox JP (2001) Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls—implications for pectin methyl esterase action, matrix properties, and cell adhesion. J Biol Chem 276:19404–19413

    Article  CAS  PubMed  Google Scholar 

  • Woisky RG, Salatino AA (1998) Analysis of propolis: some parameters and procedures for chemical quality control. J Agri Res 37:99–105

  • Xie D, Sharma SR, Paiva NL, Ferreira D, Dixon RA (2003) Role of anthocyanidin reductase encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396–399

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  CAS  PubMed  Google Scholar 

  • Yiu J-C, Tseng M-J, Liu C-W, Kuo C-T (2012) Modulation of NaCl stress in Capsicum annuum L. seedlings by catechin. Sci Hortic 134:200–209

    Article  CAS  Google Scholar 

  • Zhang X, Liu Y, Gao K, Zhao L, Liu L, Wang Y, Sun M, Gao L, Xia T (2012) Characterization of anthocyanidin reductase from shuchazao green tea. J Sci Food Agri 92:1533–1539

Download references

Acknowledgments

Authors thank the Director, CSIR-IHBT for his continuous encouragement and support and to Dr. J.P. Knox for providing JIM5 and JIM7 antibodies for immunoflorescence studies. M.M. would like to acknowledge the CSIR, GOI for providing fellowship in the form of SRF. Financial support from CSIR, GOI to the lab is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudesh Kumar Yadav.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 989 kb)

Supplementary material 2 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahajan, M., Yadav, S.K. Overexpression of a tea flavanone 3-hydroxylase gene confers tolerance to salt stress and Alternaria solani in transgenic tobacco. Plant Mol Biol 85, 551–573 (2014). https://doi.org/10.1007/s11103-014-0203-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-014-0203-z

Keywords

Navigation