Skip to main content

Advertisement

Log in

Cyclic AMP deficiency negatively affects cell growth and enhances stress-related responses in tobacco Bright Yellow-2 cells

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Cyclic adenosine 3′,5′-monophosphate (cAMP) is a recognized second messenger; however, knowledge of cAMP involvement in plant physiological processes originates primarily from pharmacological studies. To obtain direct evidence for cAMP function in plants, tobacco Bright Yellow-2 (BY-2) cells were transformed with the cAMP sponge, which is a genetically encoded tool that reduces cAMP availability. BY-2 cells expressing the cAMP sponge (cAS cells), showed low levels of free cAMP and exhibited growth inhibition that was not proportional to the cAMP sponge transcript level. Growth inhibition in cAS cells was closely related to the precocious inhibition of mitosis due to a delay in cell cycle progression. The cAMP deficiency also enhanced antioxidant systems. Remarkable changes occurred in the cAS proteomic profile compared with that of wild-type (WT) cells. Proteins involved in translation, cytoskeletal organization, and cell proliferation were down-regulated, whereas stress-related proteins were up-regulated in cAS cells. These results support the hypothesis that BY-2 cells sense cAMP deficiency as a stress condition. Finally, many proteasome subunits were differentially expressed in cAS cells compared with WT cells, indicating that cAMP signaling broadly affects protein degradation via the ubiquitin/proteasome pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amrhein N (1977) The current status of cyclic AMP in higher plants. Annu Rev Plant Physiol 28:123–132

    Article  CAS  Google Scholar 

  • Arazi T, Kaplan B, Fromm H (2000) A high-affinity calmodulin-binding site in a tobacco plasma-membrane channel protein coincides with a characteristic element of cyclic nucleotide-binding domains. Plant Mol Biol 42:591–601

    Article  CAS  PubMed  Google Scholar 

  • Ashton AR, Polya GM (1978) Cyclic adenosine 3′:5′-monophosphate in axenic rye grass endosperm cell cultures. Plant Physiol 61:718–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badejo AA, Eltelib HA, Fukunaga K, Fujikawa Y, Esaka M (2009) Increase in ascorbate content of transgenic tobacco plants overexpressing the acerola (Malpighia glabra) phosphomannomutase gene. Plant Cell Physiol 50:423–428

    Article  CAS  PubMed  Google Scholar 

  • Beavo JA, Brunton LL (2002) Cyclic nucleotide research—still expanding after half a century. Nat Rev Mol Cell Biol 3:710–718

    Article  CAS  PubMed  Google Scholar 

  • Berkowitz O, Jost R, Pollmann S, Masle J (2008) Characterization of TCTP, the translationally controlled tumor protein, from Arabidopsis thaliana. Plant Cell 20:3430–3447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolwell GP (1992) A role for phosphorylation in the down-regulation of phenylalanine ammonia-lyase in suspension-cultured cells of French bean. Phytochemistry 31:4081–4086

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brandizzi F, Irons S, Kearns A, Hawes C (2003) BY-2 cells: culture and transformation for live cell imaging. Curr Prot Cell Biol 1.7.1–1.7.16

  • Brioudes F, Thierry AM, Chambrier P, Mollereau B, Bendahmane M (2010) Translationally controlled tumor protein is a conserved mitotic growth integrator in animals and plants. Proc Natl Acad Sci USA 107:16384–16389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown EG, Newton RP (1981) Cyclic AMP and higher plants. Phytochemistry 20:2453–2463

    Article  CAS  Google Scholar 

  • Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25:1327–1333

    Article  CAS  PubMed  Google Scholar 

  • Centomani I, Sgobba A, D’Addabbo P, Dipierro N, Paradiso A, De Gara L, Dipierro S, Viggiano L, de Pinto MC (2015) Involvement of DNA methylation in the control of cell growth during heat stress in tobacco BY-2 cells. Protoplasma 252:1451–1459

    Article  CAS  PubMed  Google Scholar 

  • Chin K, Moeder W, Yoshioka K (2009) Biological roles of cyclic-nucleotide-gated ion channels in plants: what we know and do not know about this 20 member ion channel family. Botany 87:668–677

    Article  CAS  Google Scholar 

  • Cooke CJ, Smith CJ, Walton TJ, Newton RP (1994) Evidence that cyclic-AMP is involved in the hypersensitive response of Medicago-sativa to a fungal elicitor. Phytochemistry 35:889–895

    Article  CAS  Google Scholar 

  • Cools T, De Veylder L (2009) DNA stress checkpoint control and plant development. Curr Opin Plant Biol 12:23–28

    Article  CAS  PubMed  Google Scholar 

  • de Pinto MC, Tommasi F, De Gara L (2002) Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco Bright-Yellow 2 cells. Plant Physiol 130:698–708

    Article  PubMed  PubMed Central  Google Scholar 

  • Di DW, Zhang CG, Guo GQ (2015) Involvement of secondary messengers and small organic molecules in auxin perception and signaling. Plant Cell Rep 34:895–904

    Article  CAS  PubMed  Google Scholar 

  • Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N (2007) Two genes in Arabidopsis thaliana encoding GDP-l-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J 52:673–689

    Article  CAS  PubMed  Google Scholar 

  • Ehsan H, Reichheld JP, Roef L, Witters E, Lardon F, Van Bockstaele D, Van Montagu M, Inze D, Van Onckelen H (1998) Effect of indomethacin on cell cycle dependent cyclic AMP fluxes in tobacco BY-2 cells. FEBS Lett 422:165–169

    Article  CAS  PubMed  Google Scholar 

  • Ehsan H, Roef L, Witters E, Reichheld JP, Van Bockstaele D, Inze D, Van Onckelen H (1999) Indomethacin-induced G1/S phase arrest of the plant cell cycle. FEBS Lett 458:349–353

    Article  CAS  PubMed  Google Scholar 

  • Forsburg SL (2004) Eukaryotic MCM proteins: beyond replication initiation. Microbiol Mol Biol R 68:109–131

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallois JL, Guyon-Debast A, Lecureuil A, Vezon D, Carpentier V, Bonhomme S, Guerche P (2009) The Arabidopsis proteasome RPT5 subunits are essential for gametophyte development and show accession-dependent redundancy. Plant Cell 21:442–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gangwani L, Tamot BK, Khurana JP, Maheshwari SC (1991) Identification of 3′,5′-cyclic-AMP in axenic cultures of Lemna paucicostata by high-performance liquid-chromatography. Biochem Biophys Res Commun 178:1113–1119

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Han XW, Wu JH, Zheng SZ, Shang ZL, Sun DY, Zhou RG, Li B (2012) A heat-activated calcium-permeable channel—Arabidopsis cyclic nucleotide-gated ion channel 6—is involved in heat shock responses. Plant J 70:1056–1069

    Article  CAS  PubMed  Google Scholar 

  • Gehring C (2010) Adenyl cyclases and cAMP in plant signaling—past and present. Cell Commun Signal 8:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Genschik P, Criqui MC, Parmentier Y, Derevier A, Fleck J (1998) Cell cycle-dependent proteolysis in plants: identification of the destruction box pathway and metaphase arrest produced by the proteasome inhibitor MG132. Plant Cell 10:2063–2075

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holding DR, Springer PS (2002) The Arabidopsis gene PROLIFERA is required for proper cytokinesis during seed development. Planta 214:373–382

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Wang H, Figueiredo-Pereira ME (2013) Regulating the ubiquitin/proteasome pathway via cAMP-signaling: neuroprotective potential. Cell Biochem Biophys 67:55–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchins AP, Roberts GR, Lloyd CW, Doonan JH (2004) In vivo interaction between CDKA and eIF4A: a possible mechanism linking translation and cell proliferation. FEBS Lett 556:91–94

    Article  CAS  PubMed  Google Scholar 

  • Ishioka N, Tanimoto S (1990) Involvement of cyclic-AMP in adventitious bud initiation of Torenia stem segments. Plant Cell Physiol 31:91–97

    CAS  Google Scholar 

  • Kalinowsky HO, Berger S, Braun S (1988) Carbon-13 NMR spectroscopy. Wiley, New York

    Google Scholar 

  • Karimi M, Depicker A, Hilson P (2007) Recombinational cloning with plant gateway vectors. Plant Physiol 145:1144–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessler B, Levinstein R (1974) Adenosine 3′,5′-cyclic monophosphate in higher plants: assay, distribution and age-dependency. Biochim Biophys Acta 343:156–166

    Article  CAS  PubMed  Google Scholar 

  • Kominami K, Demartino GN, Moomaw CR, Slaughter CA, Shimbara N, Fujimuro M, Yokosawa H, Hisamatsu H, Tanahashi N, Shimizu Y, Tanaka K, Tohe A (1995) Nin1p, a regulatory subunit of the 26S proteasome, is necessary for activation of cdc28p kinase of Saccharomyces cerevisiae. EMBO J 14:3105–3115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kosova K, Vitamvas P, Prasil IT, Renaut J (2011) Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response. J Proteom 74:1301–1322

    Article  CAS  Google Scholar 

  • Kurosaki F, Nishi A (1993) Stimulation of calcium influx and calcium cascade by cyclic AMP in cultured carrot cells. Arch Biochem Biophys 302:144–151

    Article  CAS  PubMed  Google Scholar 

  • Laukens K, Roef L, Witters E, Slegers H, Van Onckelen H (2001) Cyclic AMP affinity purification and ESI-QTOF MS–MS identification of cytosolic glyceraldehyde 3-phosphate dehydrogenase and two nucleoside diphosphate kinase isoforms from tobacco BY-2 cells. FEBS Lett 508:75–79

    Article  CAS  PubMed  Google Scholar 

  • Lefkimmiatis K, Moyer MP, Curci S, Hofer AM (2009) “cAMP Sponge”: a buffer for cyclic adenosine 3′,5′-monophosphate. PLoS One 4:e7649

    Article  PubMed  PubMed Central  Google Scholar 

  • Lemtiri-Chlieh F, Berkowitz GA (2004) Cyclic adenosine monophosphate regulates calcium channels in the plasma membrane of Arabidopsis leaf guard and mesophyll cells. J Biol Chem 279:35306–35312

    Article  CAS  PubMed  Google Scholar 

  • Leng Q, Mercier RW, Yao WZ, Berkowitz GA (1999) Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel. Plant Physiol 121:753–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leng Q, Mercier RW, Hua BG, Fromm H, Berkowitz GA (2002) Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels. Plant Physiol 128:400–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li WW, Luan S, Schreiber SL, Assmann SM (1994) Cyclic-AMP stimulates K+ channel activity in mesophyll-cells of Vicia-Faba-L. Plant Physiol 106:957–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Locato V, Gadaleta C, De Gara L, De Pinto MC (2008) Production of reactive species and modulation of antioxidant network in response to heat shock: a critical balance for cell fate. Plant, Cell Environ 31:1606–1619

    Article  CAS  Google Scholar 

  • Lomovatskaya LA, Romanenko AS, Filinova NV, Dudareva LV (2011) Determination of cAMP in plant cells by a modified enzyme immunoassay method. Plant Cell Rep 30:125–132

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Qi Z, Smigel A, Walker RK, Verma R, Berkowitz GA (2009) Ca2+, cAMP, and transduction of non-self perception during plant immune responses. Proc Natl Acad Sci USA 106:20995–21000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maathuis FJM, Sanders D (2001) Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol 127:1617–1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsoni M, Bracale M, Espen L, Prinsi B, Negri AS, Vannini C (2008) Proteomic analysis of somatic embryogenesis in Vitis vinifera. Plant Cell Rep 27:347–356

    Article  CAS  PubMed  Google Scholar 

  • Marsoni M, Cantara C, de Pinto MC, Gadaleta C, De Gara L, Bracale M, Vannini C (2010) Exploring the soluble proteome of tobacco Bright Yellow-2 cells at the switch towards different cell fates in response to heat shocks. Plant, Cell Environ 33:1161–1175

    CAS  Google Scholar 

  • Miller JJ, Galsky AG (1974) Radioimmunological evidence for the presence of cyclic-AMP in Hordeum seeds. Phytochemistry 13:1295–1296

    Article  CAS  Google Scholar 

  • Moulding DA, Blundell MP, Spiller DG, White MRH, Cory GO, Calle Y, Kempski H, Sinclair J, Ancliff PJ, Kinnon C, Jones GE, Thrasher AJ (2007) Unregulated actin polymerization by WASp causes defects of mitosis and cytokinesis in X-linked neutropenia. J Exp Med 204:2213–2224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moutinho A, Hussey PJ, Trewavas AJ, Malho R (2001) cAMP acts as a second messenger in pollen tube growth and reorientation. Proc Natl Acad Sci USA 98:10481–10486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell-line as the HeLa-cell in the cell biology of higher-plants. Int Rev Cytol 132:1–30

    Article  CAS  Google Scholar 

  • Newton RP, Smith CJ (2004) Cyclic nucleotides. Phytochemistry 65:2423–2437

    Article  CAS  PubMed  Google Scholar 

  • Newton RP, Gibbs N, Moyse CD, Wiebers JL, Brown EG (1980) Mass spectrometric identification of adenosine 3′:5′-cyclic monophosphate isolated from a higher plant tissue. Phytochemistry 19:1909–1911

    Article  CAS  Google Scholar 

  • Newton RP, Roef L, Witters E, Van Onckelen H (1999) Tansley review no. 106—cyclic nucleotides in higher plants: the enduring paradox. New Phytol 143:427–455

    Article  CAS  Google Scholar 

  • Nikolaev VO, Lohse MJ (2006) Monitoring of cAMP synthesis and degradation in living cells. Physiology 21:86–92

    Article  CAS  PubMed  Google Scholar 

  • Olmos E, Martinez-Solano JR, Piqueras A, Hellin E (2003) Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). J Exp Bot 54:291–301

    Article  CAS  PubMed  Google Scholar 

  • Ordoñez NM, Marondedze C, Thomas L, Pasqualini S, Shabala L, Shabala S, Gehring C (2014) Cyclic mononucleotides modulate potassium and calcium flux responses to H2O2 in Arabidopsis roots. FEBS Lett 588:1008–1015

    Article  PubMed  Google Scholar 

  • Pietrowska-Borek M, Nuc K (2013) Both cyclic-AMP and cyclic-GMP can act as regulators of the phenylpropanoid pathway in Arabidopsis thaliana seedlings. Plant Physiol Biochem 70:142–149

    Article  CAS  PubMed  Google Scholar 

  • Qian WQ, Yu CM, Qin HJ, Liu X, Zhang AM, Johansen IE, Wang DW (2007) Molecular and functional analysis of phosphomannomutase (PMM) from higher plants and genetic evidence for the involvement of PMM in ascorbic acid biosynthesis in Arabidopsis and Nicotiana benthamiana. Plant J 49:399–413

    Article  CAS  PubMed  Google Scholar 

  • Rall TW, Sutherland EW, Berthet J (1957) The relation of epinephrine and glucagon to liver phosphorylase. J Biol Chem 224:1987–1995

    Google Scholar 

  • Raymond P, Narayanan A, Pradet A (1973) Evidence for the presence of 3′,5′-cyclic AMP in plant tissues. Biochem Biophys Res Commun 53:1115–1121

    Article  CAS  PubMed  Google Scholar 

  • Reichheld JP, Vernoux T, Lardon F, Van Montagu M, Inze D (1999) Specific checkpoints regulate plant cell cycle progression in response to oxidative stress. Plant J 17:647–656

    Article  CAS  Google Scholar 

  • Richards H, Das S, Smith CJ, Pereira L, Geisbrecht A, Devitt NJ, Games DE, van Geyschem J, Brenton AG, Newton RP (2002) Cyclic nucleotide content of tobacco BY-2 cells. Phytochemistry 61:531–537

    Article  CAS  PubMed  Google Scholar 

  • Sadanandom A, Bailey M, Ewan R, Lee J, Nelis S (2012) The ubiquitin-proteasome system: central modifier of plant signalling. New Phytol 196:13–28

    Article  CAS  PubMed  Google Scholar 

  • Sen S, Pilet PE (1981) Adenosine 3′,5′-cyclic monophosphate levels in maize roots. Experientia 37:1279–1280

    Article  CAS  Google Scholar 

  • Sgobba A, Paradiso A, Dipierro S, De Gara L, de Pinto MC (2015) Changes in antioxidants are critical in determining cell responses to short- and long-term heat stress. Physiol Plant 153:68–78

    Article  CAS  PubMed  Google Scholar 

  • Sheng XY, Wei Q, Jiang LP, Li X, Gao Y, Wang L (2012) Different degree in proteasome malfunction has various effects on root growth possibly through preventing cell division and promoting autophagic vacuolization. PLoS one 7:e45673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smalle J, Kurepa J, Yang PZ, Babiychuk E, Kushnir S, Durski A, Vierstra RD (2002) Cytokinin growth responses in Arabidopsis involve the 26S proteasome subunit RPN12. Plant Cell 14:17–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas L, Marondedze C, Ederli L, Pasqualini S, Gehring C (2013) Proteomic signatures implicate cAMP in light and temperature responses in Arabidopsis thaliana. J Proteom 83:47–59

    Article  CAS  Google Scholar 

  • Tijssen P (1985) Practice and theory of enzyme immunoassays. Elsevier, Amsterdam/New York

    Google Scholar 

  • Trewavas A, Gilroy S (1991) Signal transduction in plant cells. Trends Genet 7:356–361

    Article  CAS  PubMed  Google Scholar 

  • Ts’o POP (1974) Bases, nucleosides and nucleotides. In: Ts’o POP (ed) Basic principles in nucleic acid chemistry, vol vol 1. Academic Press, New York, pp 453–584

    Chapter  Google Scholar 

  • Van Damme T, Blancquaert D, Couturon P, Van der Straeten D, Sandra P, Lynen F (2014) Wounding stress causes rapid increase in concentration of the naturally occurring 2′, 3′-isomers of cyclic guanosine—and cyclic adenosine monophosphate (cGMP and cAMP) in plant tissues. Phytochemistry 103:59–66

    Article  PubMed  Google Scholar 

  • Volotovski ID, Sokolovsky SG, Molchan OV, Knight MR (1998) Second messengers mediate increases in cytosolic calcium in tobacco protoplasts. Plant Physiol 117:1023–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walden R (1998) The alphabet soup of plant intracellular signalling: enter cyclic nucleotides. Curr Opin Plant Biol 1:419–423

    Article  CAS  PubMed  Google Scholar 

  • Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369

    Article  CAS  PubMed  Google Scholar 

  • Witter E, Vanhoutte K, Dewitte V, Machackova I, Benkova E, Van Dongen W, Esmans EL, Van Onckelen HA (1999) Analysis of cyclic nucleotide cytokinins in minute plant samples using phase-system switching capillary electrospray LC-MSMS. Phytochem Anal 10:143–151

    Article  Google Scholar 

  • Zhou X, Liao WJ, Liao JM, Liao P, Lu H (2015) Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol 7:92–104

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. M. Hofer (Boston Healthcare System, Brigham and Women’s Hospital and Harvard Medical School of Massachusetts, USA) for kindly providing “cAMP-sponge”. This work was financially supported by the Italian Ministry of University and Research (FIRB-Futuro in Ricerca n° RBFR10S1LJ_002).

Author contributions

Conceptualization, M.C.d.P.; Investigation, W.S., A.S., M.M., A.P. and F.O.; Methodology, L.V. and E.B.; Validation and data curation, W.S., C.V. and M.C.d.P.; Writing—original draft, W.S., C.V. and M.C.d.P.; Writing—review and editing, W.S., C.V., M.B:, L.V., E.B. and M.C.d.P.; Funding acquisition, E.B., L.V. and M.C.d.P.; Supervision, M.C.d.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Concetta de Pinto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Representative 2DE gels of WT and cAS cells (PDF 857 kb)

Table S1

Cell length and cell viability in WT and cAS lines (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabetta, W., Vannini, C., Sgobba, A. et al. Cyclic AMP deficiency negatively affects cell growth and enhances stress-related responses in tobacco Bright Yellow-2 cells. Plant Mol Biol 90, 467–483 (2016). https://doi.org/10.1007/s11103-016-0431-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-016-0431-5

Keywords

Navigation