Skip to main content

Advertisement

Log in

Global inputs of biological nitrogen fixation in agricultural systems

  • Marschner Review
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Biological dinitrogen (N2) fixation is a natural process of significant importance in world agriculture. The demand for accurate determinations of global inputs of biologically-fixed nitrogen (N) is strong and will continue to be fuelled by the need to understand and effectively manage the global N cycle. In this paper we review and update long-standing and more recent estimates of biological N2 fixation for the different agricultural systems, including the extensive, uncultivated tropical savannas used for grazing. Our methodology was to combine data on the areas and yields of legumes and cereals from the Food and Agriculture Organization (FAO) database on world agricultural production (FAOSTAT) with published and unpublished data on N2 fixation. As the FAO lists grain legumes only, and not forage, fodder and green manure legumes, other literature was accessed to obtain approximate estimates in these cases. Below-ground plant N was factored into the estimations. The most important N2-fixing agents in agricultural systems are the symbiotic associations between crop and forage/fodder legumes and rhizobia. Annual inputs of fixed N are calculated to be 2.95 Tg for the pulses and 18.5 Tg for the oilseed legumes. Soybean (Glycine max) is the dominant crop legume, representing 50% of the global crop legume area and 68% of global production. We calculate soybean to fix 16.4 Tg N annually, representing 77% of the N fixed by the crop legumes. Annual N2 fixation by soybean in the U.S., Brazil and Argentina is calculated at 5.7, 4.6 and 3.4 Tg, respectively. Accurately estimating global N2 fixation for the symbioses of the forage and fodder legumes is challenging because statistics on the areas and productivity of these legumes are almost impossible to obtain. The uncertainty increases as we move to the other agricultural-production systems—rice (Oryza sativa), sugar cane (Saccharum spp.), cereal and oilseed (non-legume) crop lands and extensive, grazed savannas. Nonetheless, the estimates of annual N2 fixation inputs are 12–25 Tg (pasture and fodder legumes), 5 Tg (rice), 0.5 Tg (sugar cane), <4 Tg (non-legume crop lands) and <14 Tg (extensive savannas). Aggregating these individual estimates provides an overall estimate of 50–70 Tg N fixed biologically in agricultural systems. The uncertainty of this range would be reduced with the publication of more accurate statistics on areas and productivity of forage and fodder legumes and the publication of many more estimates of N2 fixation, particularly in the cereal, oilseed and non-legume crop lands and extensive tropical savannas used for grazing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alves BJR, Boddey RM, Urquiaga S (2003) The success of BNF in soybean in Brazil. Plant Soil 252:1–9

    Article  CAS  Google Scholar 

  • Aslam M, Mahmood IA, Peoples MB, Schwenke GD, Herridge DF (2003) Contribution of chickpea nitrogen fixation to increased wheat production and soil organic fertility in rain-fed cropping. Biol Fertil Soils 38:59–64

    Article  CAS  Google Scholar 

  • Bell F, Nutman PS (1971) Experiments on nitrogen fixation by nodulated lucerne. In: Lie A, Mulder EG (eds) Biological nitrogen fixation in natural and agricultural habitats. Plant and soil, special volume. Martinus Nijhoff, The Hague, pp 231–264

    Google Scholar 

  • Bergersen FJ, Brockwell J, Gault RR, Morthorpe LJ, Peoples MB, Turner GL (1989) Effects of available soil nitrogen and rates of inoculation on nitrogen fixation by irrigated soybeans and evaluation of the δ15N methods for measurement. Aust J Agric Res 40:763–780

    Article  Google Scholar 

  • Biggs I, Stewart GR, Wilson JR, Critchley C (2002) 15N natural abundance studies in Australian commercial sugarcane. Plant Soil 238:21–30

    Article  CAS  Google Scholar 

  • Boddey RM (1987) Methods for quantification of nitrogen fixation associated with gramineae. Crit Rev Plant Sci 6:209–266

    CAS  Google Scholar 

  • Boddey RM, de Oliveira O, Urquiaga S, Reis V, Olivares F, Baldani V et al (1995) Biological nitrogen fixation associated with sugarcane and rice: contributions and prospects for improvement. Plant Soil 174:195–209

    Article  CAS  Google Scholar 

  • Boddey RM, Peoples MB, Palmer B, Dart PJ (2000) Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutr Cycl Agroecosyst 57:235–270

    Article  Google Scholar 

  • Boddey RM, Polidoro JC, Resende AS, Alves BJR, Urquiaga S (2001) Use of the 15N natural abundance technique for the quantification of the contribution of N2 fixation to sugar cane and other grasses. Aust J Plant Physiol 28:889–895

    Google Scholar 

  • Boddey RM, Urquiaga S, Alves BJR, Reis V (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252:139–149

    Article  CAS  Google Scholar 

  • Boyer EW, Howarth RW, Galloway JN, Dentener FJ, Cleveland C, Asner GP et al (2004) Current nitrogen inputs to world regions. In: Mosier AR, Syers JK, Freney JR (eds) Agriculture and the nitrogen cycle. Island, Washington, pp 221–230

    Google Scholar 

  • Burns RC, Hardy RWF (1975) Nitrogen fixation in bacteria and higher plants. Springer-Verlag, Berlin

    Google Scholar 

  • Burris RH (1980) The global nitrogen budget—science or séance? In: Newton WE, Orme-Johnson WH (eds) Nitrogen fixation, volume I. University Park Press, Baltimore, pp 7–16

    Google Scholar 

  • Burris RH, Eppling FJ, Wahlin HB, Wilson PW (1942) Studies of biological nitrogen fixation with isotopic nitrogen. Soil Sci Soc Am Proc 7:258–262

    Google Scholar 

  • Carlsson G, Huss-Danell K (2003) Nitrogen fixation in perennial forage legumes in the field. Plant Soil 253:353–372

    Article  CAS  Google Scholar 

  • Chalk PM (1985) Estimation of N2 fixation by isotope dilution: an appraisal of techniques involving 15N enrichment and their application. Soil Biol Biochem 17:389–410

    Article  CAS  Google Scholar 

  • Chalk PM (1991) The contribution of associative and symbiotic nitrogen fixation to the nitrogen nutrition of non-legumes. Plant Soil 132:29–39

    Article  CAS  Google Scholar 

  • Chalk PM (1998) Dynamics of biologically fixed N in legume–cereal rotations: a review. Aust J Agric Res 49:303–316

    Article  CAS  Google Scholar 

  • Chalk PM, Ladha JK (1999) Estimation of legume symbiotic dependence: an evaluation of techniques based on 15N dilution. Soil Biol Biochem 31:1901–1917

    Article  CAS  Google Scholar 

  • Chapman AL, Myers RJK (1987) Nitrogen contributions by grain legumes to rice grown in rotation on the Cununurra soils of the Ord irrigation area, Western Australia. Aust J Exp Agric 27:155–163

    Article  Google Scholar 

  • Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO et al (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem Cycles 13:623–645

    Article  CAS  Google Scholar 

  • Crews TE (1999) The presence of nitrogen fixing legumes in terrestrial communities: evolutionary vs. ecological considerations. Biogeochemistry 46:233–246

    CAS  Google Scholar 

  • Crews TE, Peoples M (2005) Can the synchrony of nitrogen supply and crop demand be improved in legume and fertilizer-based agroecosystems?: a review. Nutr Cycl Agroecosyst 72:101–120

    Article  CAS  Google Scholar 

  • Dalal RC, Strong WM, Doughton JA, Weston EJ, McNamara GT, Cooper JE (1997) Sustaining productivity of a vertisol at Warra, Queensland, with fertilisers, no-tillage or legumes 4. Nitrogen fixation, water use and yield of chickpea. Aust J Exp Agric 37:667–676

    Article  Google Scholar 

  • Danso SKA, Hardarson G, Zapata F (1993) Misconceptions and practical problems in the use of 15N soil enrichment techniques for estimating N2 fixation. Plant Soil 152:25–52

    Article  Google Scholar 

  • Delwiche CC (1970) The nitrogen cycle. Sci Am 223:136–146

    Article  Google Scholar 

  • Di Ciocco C, Álvarez R, Andrada Y, Momo F (2004) Balance de nitrogeno en un cultivo de soja de segunda en La Pampo ondulada. Cienc Suelo 22:48–51 Buenos Aires

    Google Scholar 

  • Dobereiner J, Burris RH, Hollaender A (1978) Limitations and potentials for biological nitrogen fixation in the tropics. Plenum, New York, p 398

    Google Scholar 

  • Dong Z, Hunt S, Dowling AN, Winship LJ, Layzell DB (2001) Rapid measurement of hydrogen concentration and its use in the determination of nitrogenase activity of legume plants. Symbiosis 29:71–81

    Google Scholar 

  • Evans J, Herridge DF (1987) Nitrogen inputs and utilization in crop legumes. In: Bacon PE, Evans J, Storrier RR, Taylor AC (eds) Nitrogen cycling in temperate agricultural systems. Australian Society of Soil Science, Wagga Wagga, pp 14–43

    Google Scholar 

  • Evans J, McNeill AM, Unkovich MJ, Fettell NA, Heenan DP (2001) Net nitrogen balances for cool-season grain legume crops and contributions to wheat nitrogen uptake: a review. Aust J Exp Agric 41:347–359

    Article  CAS  Google Scholar 

  • FAOSTAT. At http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567. Accessed November 13 2007

  • Galloway JN, Schlesinger WH, Levy H II, Michaels A, Schnoor JL (1995) Nitrogen fixation: atmospheric enhancement–environmental response. Global Biogeochem Cycles 9:235–252

    Article  CAS  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP et al (2004) Nitrogen cycles: past, present and future. Biogeochemistry 70:153–226

    Article  CAS  Google Scholar 

  • Gan Y, Stulen I, Posthumus F, van Keulen H, Kuiper PJC (2002) Effects of N management on growth, N2 fixation and yield of soybean. Nutr Cycl Agroecosyst 62:163–174

    Article  CAS  Google Scholar 

  • Gan Y, Stulen I, van Keulen H, Kuiper PJC (2003) Effect of N fertilizer top-dressing at various reproductive stages on growth, N2 fixation and yield of three soybean (Glycine max (L.) Merr.) genotypes. Field Crops Res 80:147–155

    Article  Google Scholar 

  • Garcia FO (2004) Soil fertility management for soybean in Argentina. In: Moscardi F, Hoffmann-Campo CB, Saraiva OF, Galerani PR, Krzyzanowski FC, Carrao-Panizzi MC (eds) Proceedings VII World Soybean Research Conference. Brazilian Agricultural Research Corporation, National Soybean Research Center, Brazil, pp 392–399

    Google Scholar 

  • Gehring C, Vlek PLG (2004) Limitations of the 15N natural abundance method for estimating biological nitrogen fixation in Amazonian forest legumes. Basic Appl Ecol 5:567–580

    Article  CAS  Google Scholar 

  • Giller KE (2001) Nitrogen fixation in tropical cropping systems, 2nd edn. CABI, Wallingford, p 423

    Google Scholar 

  • Giller KE, Merckx R (2003) Exploring the boundaries of N2-fixation in cereals and grasses: an hypothetical and experimental framework. Symbiosis 35:3–17

    CAS  Google Scholar 

  • Goulding KWT, Bailey NJ, Bradbury NJ, Hargreaves P, Howe M, Murphy DV et al (1998) Nitrogen deposition and its contribution to nitrogen cycling and associated soil processes. New Phytol 139:49–58

    Article  CAS  Google Scholar 

  • Guafa W, Peoples MB, Herridge DF, Rerkasem B (1993) Nitrogen fixation, growth and yield of soybean grown under saturated soil culture and conventional irrigation. Field Crops Res 32:257–268

    Article  Google Scholar 

  • Gupta VVSR, Roper MM, Roget DK (2006) Potential for non-symbiotic N2-fixation in different agroecological zones of southern Australia. Aust J Soil Res 44:343–354

    Article  CAS  Google Scholar 

  • Gutiérrez-Boem FH, Scheiner JD, Rimski-Korsakov H, Lavado RS (2004) Late season nitrogen fertilization of soybeans: effects of leaf senescence, yield and environment. Nutr Cycl Agroecosyst 68:109–115

    Article  Google Scholar 

  • Hardarson G, Atkins CA (2003) Optimising biological N2 fixation by legumes in farming systems. Plant Soil 252:41–54

    Article  CAS  Google Scholar 

  • Hardarson G, Danso SKA (1993) Methods for measuring biological nitrogen fixation in grain legumes. Plant Soil 152:19–23

    Article  Google Scholar 

  • Hardarson G, Bliss FA, Cigales-Rivero MR, Henson RA, Kipe-Nolt JA, Longeri L et al (1993) Genotypic variation in biological nitrogen fixation by common bean. Plant Soil 152:59–70

    Article  Google Scholar 

  • Hardy RWF, Holsten RD, Jackson EK, Burns RC (1968) The acetylene–ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43:1185–1207

    PubMed  CAS  Google Scholar 

  • Herridge DF, Danso SKA (1995) Enhancing crop legume N2 fixation through selection and breeding. Plant Soil 174:51–82

    Article  CAS  Google Scholar 

  • Herridge DF, Holland JF (1992) Production of summer crops in northern New South Wales. I. Effects of tillage and double cropping on growth, grain and N yields of six crops. Aust J Agric Res 43:105–122

    Article  Google Scholar 

  • Herridge DF, Peoples MB (1990) The ureide assay for measuring nitrogen fixation by nodulated soybean calibrated by 15N methods. Plant Physiol 93:495–503

    PubMed  CAS  Google Scholar 

  • Herridge DF, Peoples MB (2002) Timing of xylem sampling for ureide analysis of nitrogen fixation. Plant Soil 238:57–67

    Article  CAS  Google Scholar 

  • Herridge DF, Bergersen FJ, Peoples MB (1990) Measurement of nitrogen fixation by soybean in the field using the ureide and natural 15N abundance methods. Plant Physiol 93:708–716

    PubMed  CAS  Google Scholar 

  • Herridge DF, Marcellos H, Felton WL, Turner GL, Peoples MB (1995) Chickpea increases soil-N fertility in cereal systems through nitrate sparing and N2 fixation. Soil Biol Biochem 27:545–551

    Article  CAS  Google Scholar 

  • Herridge DF, Robertson MJ, Cocks B, Peoples MB, Holland JF, Heuke L (2005) Low nodulation and nitrogen fixation of mungbean reduce biomass and grain yields. Aust J Exp Agric 45:269–277

    Article  CAS  Google Scholar 

  • Hiep NH, Diep CN, Herridge DF (2002) Nitrogen fixation of soybean and groundnut in the Mekong Delta, Vietnam. In: Herridge D (ed) Inoculants and nitrogen fixation of legumes in Vietnam. ACIAR Proc. 109e. ACIAR, Australia, pp 10–18

    Google Scholar 

  • Hoa NTL, Thao TY, Lieu P, Herridge DF (2002) N2 fixation of groundnut in the eastern region of south Vietnam. In: Herridge D (ed) Inoculants and nitrogen fixation of legumes in Vietnam. ACIAR Proc. 109e. ACIAR, Australia, pp 19–28

    Google Scholar 

  • Hoefsloot G, Termorshuizen AJ, Watt DA, Cramer MD (2005) Biological nitrogen fixation is not a major contributor to the nitrogen demand of a commercially grown South African sugarcane cultivar. Plant Soil 277:85–96

    Article  CAS  Google Scholar 

  • Hungria M, Vargas MAT (2000) Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Res 65:151–164

    Article  Google Scholar 

  • Hungria M, Franchini JC, Campo RJ, Graham PH (2005) The importance of nitrogen fixation to soybean cropping in south America. In: Werner D, Newton WE (eds) Nitrogen fixation in agriculture, forestry, ecology, and the environment. Springer, Dordrecht, pp 25–42

    Chapter  Google Scholar 

  • Hungria M, Franchini JC, Campo RJ, Crispino CC, Moraes JZ, Sibaldelli RNR et al (2006) Nitrogen nutrition of soybean in Brazil: contributions of biological N2 fixation and N fertilizer to grain yield. Can J Plant Sci 86:927–939

    Google Scholar 

  • Hunt S, Layzell DB (1993) Gas exchange of legume nodules and the regulation of nitrogenase activity. Annu Rev Plant Physiol 44:483–511

    Article  CAS  Google Scholar 

  • Janzen HH, Bruinsma Y (1989) Methodology for the quantification of root and rhizosphere nitrogen dynamics by exposure of shoots to 15N-labelled ammonia. Soil Biol Biochem 21:189–196

    Article  CAS  Google Scholar 

  • Jefing Y, Herridge DF, Peoples MB, Rerkasem B (1992) Effects of fertilization on N2 fixation and N balances of soybean grown after lowland rice. Plant Soil 147:235–242

    Article  CAS  Google Scholar 

  • Jensen ES (1997) The role of grain legume N2 fixation in the nitrogen cycling of temperate cropping systems. D.Sc. Thesis. Risø National Laboratory

  • Jørgensen FV, Ledgard SF (1997) Contribution from stolons and roots to estimates of the total amount of N2 fixed by white clover (Trifolium repens L.). Ann Bot (Lond) 80:641–648

    Article  Google Scholar 

  • Kennedy IR, Islam N (2001) The current and potential contribution of asymbiotic nitrogen fixation to nitrogen requirements on farms: a review. Aust J Exp Agric 41:447–457

    Article  CAS  Google Scholar 

  • Khan DF, Peoples MB, Chalk PM, Herridge DF (2002) Quantifying below-ground nitrogen of legumes 2. A comparison of 15N and non isotopic methods. Plant Soil 239:277–289

    Article  CAS  Google Scholar 

  • Khan WDF, Peoples MB, Schwenke GD, Felton WL, Chen D, Herridge D (2003) Effects of below ground nitrogen on N balances of field-grown fababean, chickpea, and barley. Aust J Agric Res 54:333–340

    Article  Google Scholar 

  • Lima E, Boddey RM, Döbereiner J (1987) Quantification of biological nitrogen fixation associated with sugar cane using a 15N aided nitrogen balance. Soil Biol Biochem 19:165–170

    Article  CAS  Google Scholar 

  • Mahieu S, Fustec J, Faure M-L, Corre-Hellou G, Crozat Y (2007) Comparison of two 15N labelling methods for assessing nitrogen rhizodeposition of pea. Plant Soil 295:193–205

    Article  CAS  Google Scholar 

  • Maskey SL, Bhattarai S, Peoples MB, Herridge DF (2001) On-farm measurements of nitrogen fixation by winter and summer legumes in the Hill and Terai regions of Nepal. Field Crops Res 70:209–221

    Article  Google Scholar 

  • McAuliffe C, Chamblee DS, Uribe-Arango H, Woodhouse WW (1958) Influence of inorganic nitrogen on nitrogen fixation by legumes as revealed by 15N. Agron J 50:334–337

    CAS  Google Scholar 

  • McClure PR, Israel DW, Volk RJ (1980) Evaluation of the relative ureide content of xylem sap as an indicator of N2 fixation in soybeans. Plant Physiol 66:720–725

    PubMed  CAS  Google Scholar 

  • McNeill AM, Fillery IRP (2008) Field measurement of lupin belowground nitrogen accumulation and recovery in the subsequent cereal–soil system in a semi-arid Mediterranean-type climate. Plant Soil 302:297–316

    Article  CAS  Google Scholar 

  • McNeill AM, Unkovich MJ (2007) The nitrogen cycle in terrestrial ecosystems. In: Marschner P, Rengel Z (eds) Nutrient cycling in terrestrial ecosystems. Soil biology, vol 10. Springer-Verlag, Amsterdam, pp 37–64

    Chapter  Google Scholar 

  • McNeill AM, Zhu C, Fillery IRP (1997) Use of in situ 15N-labelling to estimate the total below-ground nitrogen of pasture legumes in intact soil-plant systems. Aust J Agric Res 48:295–304

    Article  Google Scholar 

  • McNeill AM, Zhu C, Fillery IRP (1998) A new approach to quantifying the N benefit from pasture legumes to succeeding wheat. Aust J Agric Res 49:427–436

    Article  CAS  Google Scholar 

  • Minchin FR, Witty JF, Sheehy JE, Muller M (1983) A major error in the acetylene reduction assay: decreases in nodular nitrogenase activity under assay conditions. J Exp Bot 34:641–649

    Article  CAS  Google Scholar 

  • Minchin FR, Sheehy JE, Witty JF (1986) Further errors in the acetylene reduction assay: effects of plant disturbance. J Exp Bot 37:1581–1591

    Article  CAS  Google Scholar 

  • Mosier AR, Syers JK, Freney JR (2004) Nitrogen fertilizer: an essential component of increased food, feed, and fiber production. In: Mosier AR, Syers JK, Freney JR (eds) Agriculture and the nitrogen cycle. Island, Washington, pp 3–15

    Google Scholar 

  • Pate JS, Stewart GR, Unkovich M (1993) 15N natural abundance of plant and soil components of a Banksia woodland ecosystem in relation to nitrate utilization, life form, mycorrhizal status and N2-fixing abilities of component species. Plant Cell Environ 16:365–373

    Article  CAS  Google Scholar 

  • Peloni JD (2006) Soybean driven nation. World Grain, June 2006, pp 40–46

  • Peoples MB, Baldock JA (2001) Nitrogen dynamics of pastures: nitrogen fixation inputs, the impact of legumes on soil nitrogen fertility, and the contributions of fixed nitrogen to Australian farming systems. Aust J Exp Agric 41:327–346

    Article  CAS  Google Scholar 

  • Peoples MB, Craswell ET (1992) Biological nitrogen fixation: investments, expectations and actual contributions to agriculture. Plant Soil 141:13–39

    Article  CAS  Google Scholar 

  • Peoples MB, Herridge DF (1990) Nitrogen fixation by legumes in tropical and subtropical agriculture. Adv Agron 44:155–223

    Article  CAS  Google Scholar 

  • Peoples MB, Ladha JK, Herridge DF (1995) Enhancing legume N2 fixation through plant and soil management. Plant Soil 174:83–101

    Article  CAS  Google Scholar 

  • Peoples MB, Bowman AM, Gault RR, Herridge DF, McCallum MH, McCormick KM et al (2001) Factors regulating the contributions of fixed nitrogen by pasture and crop legumes to different farming systems of eastern Australia. Plant Soil 228:29–41

    Article  CAS  Google Scholar 

  • Peoples MB, Boddey RM, Herridge DF (2002) Quantification of nitrogen fixation. In: Leigh GJ (ed) Nitrogen fixation at the millennium. Elsevier, Amsterdam, pp 357–389

    Chapter  Google Scholar 

  • Peoples MB, Brockwell J, Herridge DF, Alves BJR, Urquiaga S, Boddey RM et al (2008) Biological nitrogen fixation by food legumes. In: Kharkwal MC (ed) Food legumes for nutritional security and sustainable agriculture. Proceedings 4th International Food Legumes Research Conference (IFLRC-IV), New Delhi, India. Indian Society of Genetics and Plant Breeding, New Delhi (in press)

    Google Scholar 

  • Reis VM, dos Reis FB Jr, Quesada DM, de Oliveira OCA, Alves BJR, Urquiaga S et al (2001) Biological nitrogen fixation associated with tropical pasture grasses. Aust J Plant Physiol 28:837–844

    Google Scholar 

  • Rennie RJ, Kemp GA (1982a) N2-fixation in field bean quantified by 15N isotope dilution. I. Effect of strains of Rhizobium phaseoli. Agron J 75:640–644

    Google Scholar 

  • Rennie RJ, Kemp GA (1982b) N2-fixation in field bean quantified by 15N isotope dilution. II. Effect of cultivars of beans. Agron J 75:645–649

    Google Scholar 

  • Rochester IJ, Peoples MB, Constable GA, Gault RR (1998) Faba beans and other legumes add nitrogen to irrigated cotton cropping systems. Aust J Exp Agric 38:253–260

    Article  Google Scholar 

  • Rochester IJ, Peoples MB, Hulugalle NR, Gault RR, Constable GA (2001) Using legumes to enhance nitrogen fertility and improve soil condition in cotton cropping systems. Field Crops Res 70:27–41

    Article  Google Scholar 

  • Roper MM, Ladha JK (1995) Biological N2 fixation by heterotrophic and phototrophic bacteria in association with straw. Plant Soil 174:211–224

    Article  CAS  Google Scholar 

  • Ruiz Sainz JE, Zhou JC, Rodriguez-Navarro DN, Vinardell JM, Thomas-Oates JE (2005) Soybean cultivation and BNF in China. In: Werner D, Newton WE (eds) Nitrogen fixation in agriculture, forestry, ecology, and the environment. Springer, Dordrecht, pp 67–87

    Chapter  Google Scholar 

  • Rupela OP, Johansen C, Herridge DF (1997) Extending nitrogen fixation research to farmers’ fields. ICRISAT, India, p 404

    Google Scholar 

  • Russell CA, Fillery IRP (1996a) In situ 15N labelling of lupin below-ground biomass. Aust J Agric Res 47:1035–1046

    Article  CAS  Google Scholar 

  • Russell CA, Fillery IRP (1996b) Estimates of lupin belowground biomass nitrogen, dry matter, and nitrogen turnover to wheat. Aust J Agric Res 47:1047–1059

    Article  CAS  Google Scholar 

  • Russelle MP, Birr AS (2004) Large-scale assessment of symbiotic dinitrogen fixation by crops: soybean and alfalfa in the Mississippi River basin. Agron J 96:1754–1760

    Google Scholar 

  • Salvagiotti F, Cassman KG, Specht JE, Walters DT, Weiss A, Dobermann A (2008) Nitrogen uptake, fixation and response to fertilizer N in soybeans: a review. Field Crop Res doi:10.1016/j.fcr.2008.03.001

  • Schollhorn R, Burris RH (1967) Acetylene as a competitive inhibitor of N2 fixation. Proc Natl Acad Sci USA 58:213–216

    Article  PubMed  CAS  Google Scholar 

  • Schulz S, Keatinge JDH, Wells GJ (1999) Productivity and residual effects of legumes in rice-based cropping systems in a warm-temperate environment. I. Legume biomass production and N fixation. Field Crops Res 61:23–35

    Article  Google Scholar 

  • Schwenke GD, Peoples MB, Turner GL, Herridge DF (1998) Does nitrogen fixation of commercial, dryland chickpea and faba bean crops in north-west New South Wales maintain or enhance soil nitrogen? Aust J Exp Agric 38:61–70

    Article  Google Scholar 

  • Shah Z, Shah SH, Peoples MB, Schwenke GD, Herridge DF (2003) Crop residue and fertiliser N effects on nitrogen fixation and yields of legume–cereal rotations and soil organic fertility. Field Crops Res 83:1–11

    Article  Google Scholar 

  • Shearer G, Kohl DH (1986) N2-fixation in field settings: estimations based on natural 15N abundance. Aust J Plant Physiol 13:699–756

    CAS  Google Scholar 

  • Sheldrake AR, Narayanan A (1979) Growth, development and nutrient uptake in pigeon peas (Cajanus cajan). J Agric Sci 92:513–526

    Article  Google Scholar 

  • Shutsrirung A, Sutigoolabud P, Santasup C, Senoo K, Tajima S, Hisamatsu M et al (2002) Symbiotic efficiency and compatibility of native rhizobia in northern Thailand with different soybean cultivars. Soil Sci Plant Nutr 48:491–499

    CAS  Google Scholar 

  • Smil V (1999) Nitrogen in crop production: an account of global flows. Global Biogeochem Cycles 13:647–662

    Article  CAS  Google Scholar 

  • Stewart WDP, Sampaio MJ, Isichei AO, Sylvester-Bradley R (1978) Nitrogen fixation by soil algae of temperate and tropical soils. In: Dobereiner J, Burris RH, Hollaender A (eds) Limitations and potentials for biological nitrogen fixation in the tropics. Plenum, New York, pp 41–63

    Google Scholar 

  • Toomsan B, McDonagh JF, Limpinuntana V, Giller KE (1995) Nitrogen fixation by groundnut and soybean and residual nitrogen benefits to rice in farmers’ fields in Northeast Thailand. Plant Soil 175:45–56

    Article  CAS  Google Scholar 

  • Turpin JE, Herridge DF, Robertson MJ (2002) Nitrogen fixation and soil nitrate interactions in field-grown chickpea (Cicer arietinum) and fababean (Vicia faba). Aust J Agric Res 53:599–608

    Article  CAS  Google Scholar 

  • Unkovich MJ, Pate JS (2000) An appraisal of recent field measurements of symbiotic N2 fixation by annual legumes. Field Crops Res 65:211–228

    Article  Google Scholar 

  • Unkovich MJ, Pate JS, Sanford P (1997) Nitrogen fixation by annual legumes in Australian Mediterranean agriculture. Aust J Agric Res 48:267–293

    Article  Google Scholar 

  • Unkovich MJ, Herridge DF, Peoples MB, Cadisch G, Boddey RM, Giller KE et al (2008) Measuring plant-associated nitrogen fixation in agricultural systems. ACIAR, Canberra Australia (in press)

  • Urquiaga S, Cruz KHS, Boddey RM (1992) Contribution of nitrogen fixation to sugar cane: nitrogen-15 and nitrogen balance estimates. Soil Sci Soc Am J 56:105–114

    Google Scholar 

  • Vallis I (1972) Soil nitrogen changes under continuously grazed legume–grass pastures in subtropical coastal Queensland. Aust J Exp Agric Anim Husb 12:495–501

    Article  Google Scholar 

  • van Kessel C, Hartley C (2000) Agricultural management of grain legumes: has it led to an increase in nitrogen fixation? Field Crops Res 65:165–181

    Article  Google Scholar 

  • Vessey JK (1994) Measurement of nitrogenase activity in legume root nodules: in defense of the acetylene reduction assay. Plant Soil 158:151–162

    Article  CAS  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW et al (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Walley FL, Clayton GW, Miller PR, Carr PM, Lafond GP (2007) Nitrogen economy of pulse production in the northern great plains. Agron J 99:1710–1718

    Article  CAS  Google Scholar 

  • Wani SP, Rupela OP, Lee KK (1995) Sustainable agriculture in the semi-arid tropics through biological nitrogen fixation in grain legumes. Plant Soil 174:29–49

    Article  CAS  Google Scholar 

  • Warembourg FR, Montange D, Bardin R (1982) The simultaneous use of 14CO2 and 15N2 labelling techniques to study the carbon and nitrogen economy of legumes grown under natural conditions. Physiol Plant 56:46–55

    Article  CAS  Google Scholar 

  • Weber CR (1966) Nodulating and nonnodulating soybean isolines: II. Response to applied nitrogen and modified soil conditions. Agron J 58:46–47

    CAS  Google Scholar 

  • Wetselaar R, Jakobsen P, Chaplin GR (1973) Nitrogen balance in crop systems in tropical Australia. Soil Biol Biochem 5:35–40

    Article  Google Scholar 

  • Witty JF, Minchin FR (1988) Measurement of nitrogen fixation by the acetylene reduction assay: myths and mysteries. In: Beck DP, Materon LA (eds) Nitrogen fixation by legumes in Mediterranean agriculture. Martinus Nijhoff, Dordrecht, pp 331–344

    Google Scholar 

  • Witty JF, Rennie RJ, Atkins CA (1988) 15N methods for assessing N2 fixation under field conditions. In: Summerfield RJ (ed) World crops: cool season food legumes. Kluwer Academic, London, pp 715–730

    Google Scholar 

  • Yasmin K, Cadisch G, Baggs EM (2006) Comparing 15N-labelling techniques for enriching above- and below ground components of the plant–soil system. Soil Biol Biochem 38:397–400

    CAS  Google Scholar 

  • Yoneyama T, Muraoka T, Kim TH, Dacanay EV, Nakanishi Y (1997) The natural 15N abundance of sugarcane and neighbouring plants in Brazil, the Philippines and Miyako (Japan). Plant Soil 189:239–244

    Article  CAS  Google Scholar 

  • Zebarth BJ, Alder V, Sheard RW (1991) In situ labelling of legume residues with a foliar application of an N-15 enriched urea solution. Commun Soil Sci Plant Anal 22:437–447

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Boddey.

Additional information

Responsible Editor: Yongguan Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herridge, D.F., Peoples, M.B. & Boddey, R.M. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311, 1–18 (2008). https://doi.org/10.1007/s11104-008-9668-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9668-3

Keywords

Navigation