Skip to main content

Advertisement

Log in

A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient

  • Research Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The plastoquinone (PQ) pool of the photosynthetic electron transport chain becomes reduced under anaerobic conditions. Here, anaerobiosis was used as a tool to manipulate the PQ-pool redox state in darkness and to study the effects of the PQ-redox state on the Chl-a fluorescence (OJIP) kinetics in pea leaves (Pisum sativum L.). It is shown that the FJ (fluorescence intensity at 3 ms) is linearly related to the area above the OJ-phase (first 3 ms) representing the reduction of the acceptor side of photosystem II (PSII) and FJ is also linearly related to the area above the JI-phase (3–30 ms) that parallels the reduction of the PQ-pool. This means that FJ depends on the availability of oxidized PQ-molecules bound to the QB-site. The linear relationships between FJ and the two areas indicate that FJ is not sensitive to energy transfer between PSII-antennae (connectivity). It is further shown that a ∼94% reduced PQ-pool is in equilibrium with a ∼19% reduction of QA (primary quinone acceptor of PSII). The non-linear relationship between the initial fluorescence value (F20 μs) and the area above the OJ-phase supports the idea that F20 μs is sensitive to connectivity. This is reinforced by the observation that this non-linearity can be overcome by transforming the F20 μs-values into [QA ]-values.

Based on the FJ-value of the OJIP-transient, a simple method for the quantification of the redox state of the PQ-pool is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Chl:

Chlorophyll

DCMU:

3-(3′,4′-dichlorophenyl)-1,1-dimethylurea

FNR:

Ferredoxin-NADP+-reductase

F0 :

Fluorescence intensity at 20 μs when all reaction centres are open

F20 μs :

Fluorescence intensity measured at 20 μs, also called apparent F0

FJ :

Fluorescence intensity at ∼3 ms

FJ-ox :

FJ-value after 10 s of far-red pre-illumination

FI :

Fluorescence intensity at ∼30 ms

Fp :

The maximum measured fluorescence intensity

Fm :

Fluorescence intensity when all PSII reaction centres are closed

I820 nm :

A measure for the transmitted light at 820 nm

I820 nm-10s FR:

Transmission value obtained after 10 s of far-red illumination

OJIP-transient:

Fluorescence induction transient defined by the names of its intermediate steps

P680 and P700:

The primary electron donors of photosystems II and I, respectively

PC:

Plastocyanin

PQ:

Plastoquinone

QA and QB :

Primary and secondary quinone electron acceptors of photosystem II, respectively

References

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098:275–335

    Article  CAS  PubMed  Google Scholar 

  • Allen JF (1993) Redox control of gene expression and the function of chloroplast genomes––a hypothesis. Photosynth Res 36:95–102

    Article  CAS  Google Scholar 

  • Asada K, Heber U, Schreiber U (1992) Pool size of electrons that can be donated to P700+, as determined in intact leaves: donation to P700+ from stromal components via the intersystem chain. Plant Cell Physiol 33:927–932

    CAS  Google Scholar 

  • Baker NR, Oxborough K (2004) Photosynthetic productivity. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration vol 19. Springer, Dordrecht, The Netherlands, pp 65–82

    Google Scholar 

  • Bennett J (1991) Protein phosphorylation in green plant chloroplasts. Annu Rev Plant Physiol Plant Mol Biol 42:281–311

    Article  CAS  Google Scholar 

  • Bennoun P (1982) Evidence for a respiratory chain in the chloroplast. Proc Natl Acad Sci USA 79:4352–4356

    Article  CAS  PubMed  Google Scholar 

  • Bennoun P (2001) Chlororespiration and the process of carotenoid biosynthesis. Biochim Biophys Acta 1506:133–142

    Article  CAS  PubMed  Google Scholar 

  • Carol P, Kuntz M (2001) A plastid terminal oxidase comes to light: implications for carotenoid biosynthesis and chlororespiration. Trends Plant Sci 6:31–36

    Article  CAS  PubMed  Google Scholar 

  • Cournac L, Redding K, Ravenel J, Rumeau D, Josse E-M, Kuntz M, Peltier G (2000) Electron flow between photosystem II and oxygen in chloroplasts of photosystem I-deficient algae is mediated by a quinol oxidase involved in chlororespiration. J Biol Chem 275:17256–17262

    Article  CAS  PubMed  Google Scholar 

  • Diner B (1977) Dependence of the deactivation reactions of photosystem II on the redox state of plastoquinone pool A varied under anaerobic conditions; Equilibria on the acceptor side of photosystem II. Biochim Biophys Acta 460:247–258

    Article  CAS  PubMed  Google Scholar 

  • Ducruet JM, Lemoine Y (1985) Increased heat sensitivity of the photosynthetic apparatus in triazine-resistant biotypes from different plant species. Plant Cell Physiol 26:419–429

    CAS  Google Scholar 

  • Escoubas J-M, Lomas M, LaRoche J, Falkowski PG (1995) Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci USA 92:10237–10241

    Article  CAS  PubMed  Google Scholar 

  • Feild TS, Nedbal L, Ort DR (1998) Nonphotochemical reduction of the plastoquinone pool in sunflower leaves originates from chlororespiration. Plant Physiol 116:1209–1218

    Article  CAS  PubMed  Google Scholar 

  • Groom QJ, Kramer DM, Crofts AR, Ort DR (1993) The non-photochemical reduction of plastoquinone in leaves. Photosynth Res 36:205–215

    Article  CAS  Google Scholar 

  • Haldimann P, Strasser RJ (1999) Effects of anaerobiosis as probed by the polyphasic chlorophyll a fluorescence rise kinetic in pea (Pisum sativum L.). Photosynth Res 62:67–83

    Article  CAS  Google Scholar 

  • Haldimann P, Tsimilli-Michael M (2002) Mercury inhibits the non-photochemical reduction of plastoquinone by exogenous NADPH and NADH: evidence from measurements of the polyphasic chlorophyll a fluorescence rise in spinach chloroplasts. Photosynth Res 74:37–50

    Article  CAS  PubMed  Google Scholar 

  • Harris GC, Heber U (1993) Effects of anaerobiosis on chlorophyll fluorescence yield in spinach (Spinacia oleracea) leaf discs. Plant Physiol 101:1169–1173

    CAS  PubMed  Google Scholar 

  • Heber U, Walker D (1992) Concerning a dual function of coupled cyclic electron transport in leaves. Plant Physiol 100:1621–1626

    Article  CAS  PubMed  Google Scholar 

  • Holtgrefe S, Bader KP, Horton P, Scheibe R, Von Schaewen A, Backhausen JE (2003) Decreased content of leaf ferredoxin changes electron distribution and limits photosynthesis in transgenic potato plants. Plant Physiol 133:1768–1778

    Article  CAS  PubMed  Google Scholar 

  • Hormann H, Neubauer C, Schreiber U (1994) An active Mehler-peroxidase reaction sequence can prevent cyclic electron transport in the presence of dioxygen in intact spinach chloroplasts. Photosynth Res 41:429–437

    Article  CAS  Google Scholar 

  • Ilík P, Schansker G, Kotabová E, Váczi P, Strasser RJ, Barták M (2006) A dip in the chlorophyll fluorescence induction at 0.2–2 s in Trebouxia-possessing lichens reflects a fast reoxidation of photosystem I. A comparison with higher plants. Biochim Biophys Acta 1757:12–20

    Article  PubMed  CAS  Google Scholar 

  • Joët T, Genty B, Josse E-M, Kuntz M, Cournac L, Peltier G (2002) Involvement of a plastid terminal oxidase in plastoquinone oxidation as evidenced by expression of the Arabidopsis thaliana enzyme in tobacco. J Biol Chem 277:31623–31630

    Article  PubMed  CAS  Google Scholar 

  • Joliot A, Joliot P (1964) Etude cinétique de la réaction photochimique libérant l’oxygène au cours de la photosynthèse. C R Acad Sc Paris 258:4622–4625

    CAS  Google Scholar 

  • Joliot P, Joliot A (1979) Comparative study of the fluorescence yield and of the C550 absorption change at room temperature. Biochim Biophys Acta 546:93–105

    Article  CAS  PubMed  Google Scholar 

  • Joliot P, Joliot A (2002) Cyclic electron transport in plant leaf. Proc Natl Acad Sci USA 99:10209–10214

    Article  CAS  PubMed  Google Scholar 

  • Kautsky H, Appel W, Amann H (1960) Chlorophyllfluorescenzkurve und Kohlensäureassimilation. XIII. Die Fluorescenzkurve und die Photochemie der Pflanze. Biochem Z 332:277–292

    CAS  PubMed  Google Scholar 

  • Klughammer C, Schreiber U (1991) Analysis of light-induced absorbance changes in the near-infrared spectral region; I. Characterization of various components in isolated chloroplasts. Z Naturforsch 46c:233–244

    Google Scholar 

  • Kramer DM, Crofts AR (1993) The concerted reduction of the high- and low-potential chains of the bf complex by plastoquinol. Biochim Biophys Acta 1183:72–84

    Article  CAS  Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218

    Article  CAS  PubMed  Google Scholar 

  • Kruk J, Karpinski S (2006) An HPLC-based method of estimation of the total redox state of plastoquinone in chloroplasts, the size of the photochemically active plastoquinone-pool and its redox state in thylakoids of Arabidopsis. Biochim Biophys Acta 1757:1669–1675

    Article  CAS  PubMed  Google Scholar 

  • Lazár D (2003) Chlorophyll a fluorescence rise induced by high light illumination of dark-adapted plant tissue studied by means of a model of photosystem II and considering photosystem II heterogeneity. J Theor Biol 220:469–503

    Article  PubMed  CAS  Google Scholar 

  • Lazár D (2006) The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct Plant Biol 33:9–30

    Article  Google Scholar 

  • Malkin S, Kok B (1966) Fluorescence induction studies in isolated chloroplasts; I. Number of components involved in the reaction and quantum yields. Biochim Biophys Acta 126:413–432

    Article  CAS  PubMed  Google Scholar 

  • Melis A, Schreiber U (1979) The kinetic relationship between the C-550 absorbance change, the reduction of Q (ΔA320) and the variable fluorescence yield change in chloroplasts at room temperature. Biochim Biophys Acta 547:47–57

    Article  CAS  PubMed  Google Scholar 

  • Munday JC, Govindjee (1969) Light-induced changes in the fluorescence yield of chlorophyll a in vivo; III. The dip and the peak in the fluorescence transient of Chlorella pyrenoidosa. Biophys J 9:1–21

    CAS  PubMed  Google Scholar 

  • Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371

    Article  CAS  PubMed  Google Scholar 

  • Murata N, Nishimura M, Takamiya A (1966) Fluorescence of chlorophyll in photosynthetic systems; II. Induction of fluorescence in isolated spinach chloroplasts. Biochim Biophys Acta 120:23–33

    Article  CAS  PubMed  Google Scholar 

  • Petrouleas V, Crofts AR (2005) The iron-quinone acceptor complex. In: Wydrzynski TJ, Satoh K (eds) Photosystem II; The light-driven water:plastoquinone oxidoreductase. Advances in photosynthesis and respiration vol 22. Springer, Dordrecht, The Netherlands, pp 177–206

    Google Scholar 

  • Pettai H, Oja V, Freiberg A, Laisk A (2005) Photosynthetic activity of far-red light in green plants. Biochim Biophys Acta 1708:311–321

    Article  CAS  PubMed  Google Scholar 

  • Pfannschmidt T, Nilsson A, Allen JF (1999) Photosynthetic control of gene expression. Nature 397:625–628

    Article  CAS  Google Scholar 

  • Robinson HH, Crofts AR (1983) Kinetics of the oxidation-reduction reactions of photosystem II quinone acceptor complex, and the pathway for deactivation. FEBS Lett 153:221–226

    Article  CAS  Google Scholar 

  • Samson G, Prášil O, Yaakoubd B (1999) Photochemical and thermal phases of chlorophyll a fluorescence. Photosynthetica 37:163–182

    Article  CAS  Google Scholar 

  • Schansker G, Strasser RJ (2005) Quantification of non-QB-reducing centres in leaves using a far-red pre-illumination. Photosynth Res 84:145–151

    Article  CAS  PubMed  Google Scholar 

  • Schansker G, Srivastava A, Govindjee, Strasser RJ (2003) Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Funct Plant Biol 30:785–796

    Article  CAS  Google Scholar 

  • Schansker G, Tóth SZ, Strasser RJ (2005) Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl-a fluorescence rise OJIP. Biochim Biophys Acta 1706:250–261

    Article  CAS  PubMed  Google Scholar 

  • Schansker G, Tóth SZ, Strasser RJ (2006) Dark-recovery of the Chl-a fluorescence transient (OJIP) after light adaptation: the qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side. Biochim Biophys Acta 1757:787–797

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U (2002) Assessment of maximal fluorescence yield: donor-side dependent quenching and QB-quenching. In: Van Kooten O, Snel JFH (eds) Plant spectrofluorometry: applications and basic research. Rozenberg Publishers, Amsterdam, The Netherlands, pp 23–47

    Google Scholar 

  • Schreiber U, Neubauer C (1990) O2-dependent electron flow, membrane energization and the mechanism of non-photochemical quenching of chlorophyll fluorescence. Photosynth Res 25:279–293

    Article  CAS  Google Scholar 

  • Schreiber U, Vidaver W (1974) Chlorophyll fluorescence induction in anaerobic Scenedesmus obliquus. Biochim Biophys Acta 368:97–112

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U, Neubauer C, Klughammer C (1989) Devices and methods for room-temperature fluorescence analysis. Phil Trans R Soc Lond B 323:241–251

    Article  CAS  Google Scholar 

  • Srivastava A, Guissé B, Greppin H, Strasser RJ (1997) Regulation of antenna structure and electron transport in Photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochim Biophys Acta 1320:95–106

    Article  CAS  Google Scholar 

  • Strasser RJ (1978) The grouping model of plant photosynthesis. In: Akoyunoglou G, Argyroudi-Akoyunoglu JH (eds) Chloroplast development. Developments in plant biology vol 2. Elsevier/North-Holland Biomedical Press, Amsterdam, The Netherlands, pp 513–524

    Google Scholar 

  • Strasser RJ, Greppin H (1981) Primary reactions of photochemistry in higher plants. In: Akoyunoglou G (ed) Photosynthesis III; Structure and molecular organization of the photosynthetic apparatus. Balaban International Science Services, Philadelphia, USA, pp 717–726

    Google Scholar 

  • Strasser RJ, Stirbet AD (2001) Estimation of the energetic connectivity of PS II centres in plants using the fluorescence rise O-J-I-P; Fitting of experimental data to three different PS II models. Math Comp Simul 56:451–461

    Article  Google Scholar 

  • Strasser BJ, Strasser RJ (1995) Measuring fast fluorescent transients to address environmental questions: the JIP-test. In: Mathis P (ed) Photosynthesis: from light to biosphere vol V. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 977–980

    Google Scholar 

  • Strasser RJ, Srivastava A, Govindjee (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61:32–42

    CAS  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration vol 19. Springer, Dordrecht, The Netherlands, pp 321–362

    Google Scholar 

  • Sušila P, Lazár D, Ilík P, Tomek P, Nauš J (2004) The gradient of exciting radiation within a sample affects the relative height of steps in the fast chlorophyll a fluorescence rise. Photosynthetica 42:161–172

    Article  Google Scholar 

  • Terashima I, Inoue Y (1985) Palisade tissue chloroplasts and spongy tissue chloroplasts in spinach; Biochemical and ultrastructural differences. Plant Cell Physiol 26:63–75

    CAS  Google Scholar 

  • Tomek P, Lazár D, Ilík P, Nauš J (2001) On the intermediate steps between the O and P steps in chlorophyll a fluorescence rise measured at different intensities of exciting light. Aust J Plant Physiol 28:1151–1160

    Google Scholar 

  • Tóth SZ (2006) Analysis and application of the fast chl-a fluorescence (OJIP) transient complemented with simultaneous 820 nm transmission measurements. Doctoral thesis, N° 3741, University of Geneva, Switzerland. Available at: http://www.unige.ch/cyberdocuments/theses2006/TothSZ/meta.html

  • Tóth SZ, Schansker G, Strasser RJ (2005) In intact leaves, the maximum fluorescence level (FM) is independent of the redox state of the plastoquinone pool: a DCMU inhibition study. Biochim Biophys Acta 1708:275–282

    Article  PubMed  CAS  Google Scholar 

  • Tóth SZ, Schansker G, Garab G, Strasser RJ (2007) Photosynthetic electron transport activity in heat-treated barley leaves: the role of internal alternative electron donors to photosystem II. Biochim Biophys Acta 1767:295–305

    Article  PubMed  CAS  Google Scholar 

  • Trebitsh T, Danon A (2001) Translation of chloroplast psbA mRNA is regulated by signals initiated by both photosystem II and I. Proc Natl Acad Sci USA 98:12289–12294

    Article  CAS  PubMed  Google Scholar 

  • Velthuys BR, Amesz J (1973) The effect of dithionite on fluorescence and luminescence of chloroplasts. Biochim Biophys Acta 325:126–137

    Article  CAS  PubMed  Google Scholar 

  • Vener AV, Van Kan PJM, Gal A, Andersson B, Ohad I (1995) Activation/deactivation cycle of redox-controlled thylakoid protein phosphorylation; Role of plastoquinol bound to the cyt bf complex. J Biol Chem 270:25225–25232

    Article  CAS  PubMed  Google Scholar 

  • Vener AV, Van Kan PJM, Rich PR, Ohad I, Andersson B (1997) Plastoquinol at the quinol oxidation site of reduced cytochrome bf mediates signal transduction between light and protein phosphorylation: thylakoid protein kinase deactivation by a single-turnover flash. Proc Natl Acad Sci USA 94:1585–1590

    Article  CAS  PubMed  Google Scholar 

  • Yaakoubd B, Andersen R, Desjardins Y, Samson G (2002) Contributions of the free oxidized and QB-bound plastoquinone molecules to the thermal phase of chlorophyll a fluorescence. Photosynth Res 74:251–257

    Article  CAS  PubMed  Google Scholar 

  • Zhu X-G, Govindjee, Baker NR, de Sturler E, Ort DR, Long SP (2005) Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with Photosystem II. Planta 223:114–133

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr M. Tsimilli-Michael for her critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Schansker.

Additional information

Szilvia Z. Tóth and Gert Schansker contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tóth, S.Z., Schansker, G. & Strasser, R.J. A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient. Photosynth Res 93, 193–203 (2007). https://doi.org/10.1007/s11120-007-9179-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9179-8

Keywords

Navigation