Skip to main content

Advertisement

Log in

Proteomic analysis of highly purified prolamellar bodies reveals their significance in chloroplast development

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The prolamellar body (PLB) proteome of dark-grown wheat leaves was characterized. PLBs are formed not only in etioplasts but also in chloroplasts in young developing leaves during the night, yet their function is not fully understood. Highly purified PLBs were prepared from 7-day-old dark-grown leaves and identified by their spectral properties as revealed by low-temperature fluorescence spectroscopy. The PLB preparation had no contamination of extra-plastidal proteins, and only two envelope proteins were found. The PLB proteome was analysed by a combination of 1-D SDS-PAGE and nano-LC FTICR MS. The identification of chlorophyll synthase in the PLB fraction is the first time this enzyme protein was found in extracts of dark-grown plants. This finding is in agreement with its previous localization to PLBs using activity studies. NADPH:protochlorophyllide oxidoreductase A (PORA), which catalyses the reduction of protochlorophyllide to chlorophyllide, dominates the proteome of PLBs. Besides the identification of the PORA protein, the PORB protein was identified for the first time in dark-grown wheat. Altogether 64 unique proteins, representing pigment biosynthesis, photosynthetic light reaction, Calvin cycle proteins, chaperones and protein synthesis, were identified. The in number of proteins’ largest group was the one involved in photosynthetic light reactions. This fact strengthens the assumption that the PLB membranes are precursors to the thylakoids and used for the formation of the photosynthetic membranes during greening. The present work is important to enhance our understanding of the significance of PLBs in chloroplast development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

1-D:

One-dimensional

2-D:

Two-dimensional

comp-PLB:

Comparative-PLB

EPIM:

Etioplast inner membrane

nano-LC:

Nanoliquid chromatography

FTICR MS:

Fourier transform-ion cyclotron resonance mass spectrometry

Pchlide:

Protochlorophyllide

PLB:

Prolamellar body

POR:

NADPH:protochlorophyllide oxidoreductase

PT:

Prothylakoid

SDS-PAGE:

Sodium dodecyl sulphate polyacrylamide gel electrophoresis

References

  • Armstrong GA, Runge S, Frick G, Sperling U, Apel K (1995) Identification of NADPH:protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol 108:1505–1517

    Article  PubMed  CAS  Google Scholar 

  • Aronsson H, Jarvis P (2002) A simple method for isolating import-competent Arabidopsis chloroplasts. FEBS Lett 529:215–220

    Article  PubMed  CAS  Google Scholar 

  • Baginsky S, Kleffmann T, von Zychlinski A, Gruissem W (2005) Analysis of shotgun proteomics and RNA profiling data from Arabidopsis thaliana chloroplasts. J Proteome Res 4:637–640

    Article  PubMed  CAS  Google Scholar 

  • Bahl J, Francke B, Monéger R (1976) Lipid composition of envelopes, prolamellar bodies and outer plastid membranes in etiolated, green and greening wheat leaves. Planta 129:193–201

    Article  Google Scholar 

  • Benli M, Schulz R, Apel K (1991) Effect of light on the NADPH-protochlorophyllide oxidoreductase of Arabidopsis thaliana. Plant Mol Biol 16:615–625

    Article  PubMed  CAS  Google Scholar 

  • Birve SJ, Selstam E, Johansson LB-Å (1996) Secondary structure of NADPH:protochlorophyllide oxidoreductase examined by circular dichroism and prediction methods. Biochem J 317:549–555

    PubMed  CAS  Google Scholar 

  • Blomqvist LA, Ryberg M, Sundqvist C (2006) Proteomic analysis of the etioplast inner membranes of wheat (Triticum aestivum) by two-dimensional electrophoresis and mass spectrometry. Physiol Plant 128:368–381

    Article  CAS  Google Scholar 

  • Bruce BD (1998) The role of lipids in plastid protein import. Plant Mol Biol 38:223–246

    Article  PubMed  CAS  Google Scholar 

  • Böddi B, Lindsten A, Ryberg M, Sundqvist C (1989) On the aggregational states of protochlorophyllide and its protein complexes in wheat etioplasts. Physiol Plant 76:135–143

    Article  Google Scholar 

  • Böddi B, Evertsson I, Ryberg M, Sundqvist C (1996) Protochlorophyllide transformation and chlorophyll accumulation in epicotyls of pea (Pisum sativum). Physiol Plant 96:706–713

    Article  Google Scholar 

  • Carlsohn E, Nyström J, Karlsson H, Svennerholm A-M, Nilsson CL (2006) Characterization of the outer membrane protein profile from disease-related Helicobacter pylori isolates by subcellular fractionation and nano-LC FT-ICR MS analysis. J Proteome Res 5:3197–3204

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Harmon AC (2006) Advances in plant proteomics. Proteomics 6:5504–5516

    Article  PubMed  CAS  Google Scholar 

  • Domanskii V, Rassadina V, Gus-Mayer S, Wanner G, Schoch S, Rüdiger W (2003) Characterization of two phases of chlorophyll formation during greening of etiolated barley leaves. Planta 216:475–483

    PubMed  CAS  Google Scholar 

  • Donnelly BE, Madden RD, Ayoubi P, Porter DR, Dillwith JW (2005) The wheat (Triticum aestivium L.) leaf proteome. Proteomics 5:1624–1633

    Article  PubMed  CAS  Google Scholar 

  • Ferro M, Salvi D, Brugière S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J, Rolland N (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics 2:325–345

    PubMed  CAS  Google Scholar 

  • Friso G, Giacomelli L, Ytterberg J, Peltier J-B, Rudella A, Sun Q, van Wijk KJ (2004) In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database. Plant Cell 16:478–499

    Article  PubMed  CAS  Google Scholar 

  • Froelich JE, Wilkerson CG, Ray WK, McAndrew RS, Osteryoung KW, Gage DA, Phinney BS (2003) Proteomic study of the Arabidopsis thaliana chloroplastic envelope membrane utilizing alternatives to traditional two-dimensional electrophoresis. J Proteome Res 2:413–425

    Article  CAS  Google Scholar 

  • Funk C, Schröder WP, Napiwotzki A, Tjus SE, Renger G, Andersson B (1995) The PSII-S protein of higher plants: a new type of pigment-binding protein. Biochemistry 34:11133–11141

    Article  PubMed  CAS  Google Scholar 

  • Gaubier P, Wu H-J, Laudié M, Delseny M, Grellet F (1995) A chlorophyll synthetase gene from Arabidopsis thaliana. Mol Gen Genet 249:58–64

    Article  PubMed  CAS  Google Scholar 

  • Grevby C, Engdahl S, Ryberg M, Sundqvist C (1989) Binding properties of NADPH-protochlorophyllide oxidoreductase as revealed by detergent and ion treatments of isolated and immobilized prolamellar bodies. Physiol Plant 77:493–503

    Article  CAS  Google Scholar 

  • Gunning BES, Steer MW (1996) Plant cell biology structure and function. Jones and Bartlett Publishers International, London

    Google Scholar 

  • Hashimoto A, Akasaka T, Yamamoto Y (1993) Characteristics of the assembly of the 33 kDa oxygen-evolving complex protein in the etioplasts and the developing chloroplasts of barley seedlings. Biochim Biophys Acta 1183:397–407

    Article  CAS  Google Scholar 

  • Hinz G, Hillmer S, Bäumer M, Hohl I (1999) Vacuolar storage proteins and the putative vacuolar sorting receptor BP-80 exit the golgi apparatus of developing pea cotyledons in different transport vesicles. Plant Cell 11:1509–1524

    Article  PubMed  CAS  Google Scholar 

  • Holtorf H, Reinbothe S, Reinbothe C, Bereza B, Apel K (1995) Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.). Proc Natl Acad Sci USA 92:3254–3258

    Article  PubMed  CAS  Google Scholar 

  • Horton P, Ruban A (2004) Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. J Exp Bot 56:365–373

    Article  PubMed  CAS  Google Scholar 

  • Ikeuchi M, Murakami S (1982) Measurement and identification of NADPH:protochlorophyllide oxidoreductase solubilised with Triton X-100 from etioplast membranes of squash cotyledons. Plant Cell Physiol 23:1089–1099

    CAS  Google Scholar 

  • Joyard J, Block M, Pineau B, Albrieux C, Douce R (1990) Envelope membranes from mature spinach chloroplasts contain a NADPH:protochlorophyllide reductase on the cytosolic side of the outer membrane. J Biol Chem 265:21820–21827

    PubMed  CAS  Google Scholar 

  • Jürgens G (2004) Membrane trafficking in plants. Annu Rev Cell Dev Biol 20:481–504

    Article  PubMed  CAS  Google Scholar 

  • Kleffmann T, Russenberger D, von Zychlinski A, Christopher W, Sjolander K, Gruissem W, Baginsky S (2004) The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol 14:354–362

    Article  PubMed  CAS  Google Scholar 

  • Kleffmann T, von Zychlinski A, Russenberger D, Hirsch-Hoffmann M, Gehrig P, Gruissem W, Baginsky S (2007) Proteome dynamics during plastid differentiation in rice. Plant Physiol 143:912–923

    Article  PubMed  CAS  Google Scholar 

  • Kósa A, Márton Z, Böddi B (2005) Fast phototransformation of the 636 nm-emitting protochlorophyllide form in epicotyls of dark-grown pea (Pisum sativum). Physiol Plant 124:132–142

    Article  CAS  Google Scholar 

  • Kroll D, Meierhoff K, Bechtold N, Kinoshita M, Westphal S, Votchknecht UC, Soll J, Westhoff P (2001) VIPP1, a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formation. Proc Natl Acad Sci USA 98:4238–4242

    Article  PubMed  CAS  Google Scholar 

  • Kuroda H, Masuda T, Ohta H, Shioi Y, Takamiya K (1996) Effects of light, developmental age and phytohormones on the expression of the gene encoding NADPH-protochlorophyllide oxidoreductase in Cucumis sativus. Plant Physiol Biochem 34:17–22

    CAS  Google Scholar 

  • Lindsten A, Ryberg M, Sundqvist C (1988) The polypeptide composition of highly purified prolamellar bodies and prothylakoids from wheat (Triticum aestivium) as revealed by silver staining. Physiol Plant 72:167–176

    Article  CAS  Google Scholar 

  • Lindsten A, Welch CJ, Schoch S, Ryberg M, Rüdiger W, Sundqvist C (1990) Chlorophyll synthetase is latent in well preserved prolamellar bodies of etiolated wheat. Physiol Plant 80:277–285

    Article  CAS  Google Scholar 

  • Lindsten A, Wiktorsson B, Ryberg M, Sundqvist C (1993) Chlorophyll synthetase activity is relocated from transforming prolamellar bodies to developing thylakoids during irradiation of dark-grown wheat. Physiol Plant 88:29–36

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Lütz C, Röper U, Beer NS, Griffiths T (1981) Sub-etioplast localization of the enzyme NADPH:protochlorophyllide oxidoreductase. Eur J Biochem 118:347–353

    Article  PubMed  Google Scholar 

  • Masuda T, Fusada N, Oosawa N, Takamatsu K, Yamamoto YY, Ohto M, Nakamura K, Goto K, Shibata D, Shirano Y, Hayashi H, Kato T, Tabata S, Shimada H, Ohta H, Takamiya K (2003) Functional analysis of isoforms of NADPH:protochlorophyllide oxidoreductase (POR), PORB and PORC, in Arabidopsis thaliana. Plant Cell Physiol 44:963–974

    Article  PubMed  CAS  Google Scholar 

  • Morré DJ, Selldén G, Sundqvist C, Sandelius AS (1991) Stromal low temperature compartment derived from the inner membrane of the chloroplast envelope. Plant Physiol 97:1558–1564

    Article  PubMed  Google Scholar 

  • Müller B, Eichacker LA (1999) Assembly of the D1 precursor in monomeric photosystem II reaction center precomplexes precedes chlorophyll a-triggered accumulation of reaction center II in barley etioplasts. Plant Cell 11:2365–2377

    Article  PubMed  Google Scholar 

  • Olsen JV, Ong SE, Mann M (2004) Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol Cell Proteomics 3:608–614

    Article  PubMed  CAS  Google Scholar 

  • Oster U, Rüdiger W (1997) The G4 gene of Arabidopsis thaliana encodes a chlorophyll synthase of etiolated plants. Bot Acta 110:420–423

    CAS  Google Scholar 

  • Paulsen H (2001) Pigment assembly—transport and ligation In: Aro E-M, Andersson B (eds) Regulation of photosynthesis. Kluwer, Dordrecht, pp 219–233

    Google Scholar 

  • Peltier JB, Emanuelsson O, Kalume DE, Ytterberg J, Friso G, Rudella A, Liberles DA, Soderberg L, Roepstorff P, von Heijne G, van Wijk KJ (2002) Central functions of the lumenal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction. Plant Cell 14:211–236

    Article  PubMed  CAS  Google Scholar 

  • Peltier JB, Ytterberg AJ, Sun Q, van Wijk KJ (2004) New functions of the thylakoid membrane proteome of Arabidopsis thaliana revealed by a simple, fast, and versatile fractionation strategy. J Biol Chem 279:49367–49383

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer SR (2007) Unsolved mysteries in membrane traffic. Annu Rev Biochem 76:629–645

    Article  PubMed  CAS  Google Scholar 

  • Pineau B, Dubertret G, Joyard J, Douce R (1986) Fluorescence properties of the envelope membranes from spinach chloroplasts. J Biol Chem 261:9210–9215

    PubMed  CAS  Google Scholar 

  • Plücken H, Müller B, Grohmann D, Westhoff P, Eichacker LA (2002) The HCF136 protein is essential for assembly of the photosystem II reaction center in Arabidopsis thaliana. FEBS Lett 532:85–90

    Article  PubMed  Google Scholar 

  • Rascio N, Mariani Colombo P, Orsinego M (1980) The ultrastructural development of plastids in leaves of maize plants exposed to continuous illumination. Protoplasma 102:131–139

    Article  Google Scholar 

  • Rebeiz CC, Rebeiz CA (1986) Chloroplast biogenesis 53: ultrastructural study of chloroplast development during photoperiodic greening. In: Akoyunoglou G, Senger H (eds) Regulation of chloroplast differentiation. AR Liss, New York, pp 389–396

    Google Scholar 

  • Rossignol M, Peltier J-B, Mock H-P, Matros A, Maldonado AM, Jorrin JV (2006) Plant proteome analysis: a 2004–2006 update. Proteomics 6:5529–5548

    Article  PubMed  CAS  Google Scholar 

  • Rüdiger W (1993) Esterification of chlorophyllide and its implication for thylakoid development. In: Sundqvist C, Ryberg M (eds) Pigment-protein complexes in plastids: synthesis and assembly. Academic, San Diego, pp 219–240

    Google Scholar 

  • Rüdiger W, Benz J, Guthoff C (1980) Detection and partial characterization of activity of chlorophyll synthetase in etioplast membranes. Eur J Biochem 109:193–200

    Article  PubMed  Google Scholar 

  • Rüdiger W, Böhm S, Helfrich M, Schulz S, Schoch S (2005) Enzymes of the last steps of chlorophyll biosynthesis: modification of the substrate helps to understand the topology of the active center. Biochemistry 44:10864–10872

    Article  PubMed  CAS  Google Scholar 

  • Ryberg M, Dehesh K (1986) Localization of NADPH-protochlorophyllide oxidoreductase in dark-grown wheat (Triticum aestivum) by immuno-electron microscopy before and after transformation of the prolamellar bodies. Physiol Plant 66:616–624

    Article  CAS  Google Scholar 

  • Ryberg M, Sundqvist C (1982) Characterization of prolamellar bodies and prothylakoids fractionated from wheat etioplasts. Physiol Plant 56:125–132

    Article  CAS  Google Scholar 

  • Ryberg M, Sundqvist C (1988) The regular ultrastructure of isolated prolamellar bodies depends on the presence of membrane-bound NADPH-protochlorophyllide oxidoreductase. Physiol Plant 73:218–226

    Article  CAS  Google Scholar 

  • Ryberg M, Sundqvist C (1991) Structural and functional significance of pigment-protein complexes of chlorophyll precursors. In: Scheer H (ed) Chlorophylls. CRS press, Boca Raton, pp 587–612

    Google Scholar 

  • Ryrie IJ, Young S, Anderson B (1984) Development of the 33-, 23- and 16-kDa polypeptides of the photosynthetic oxygen-evolving system during greening. FEBS Lett 177:269–273

    Article  CAS  Google Scholar 

  • Schmid HC, Oster U, Kögel J, Lenz S, Rüdiger W (2001) Cloning and characterization of chlorophyll synthase from Avena sativa. Biol Chem 382:903–911

    Article  PubMed  CAS  Google Scholar 

  • Schoefs B, Franck F (2003) Chlorophyll biosynthesis: mechanisms and evolution. Photochem Photobiol 78:543–557

    Article  PubMed  CAS  Google Scholar 

  • Schubert M, Petersson UA, Haas BJ, Funk C, Schroder WP, Kieselbach T (2002) Proteome map of the chloroplast lumen of Arabidopsis thaliana. J Biol Chem 277:8354–8365

    Article  PubMed  CAS  Google Scholar 

  • Selstam E (1998) Development of thylakoid membranes with respect to lipids. In: Siegenthaler P-A, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Kluwer, Dordrecht, pp 209–224

    Google Scholar 

  • Shaw P, Henwood J (1985) Immunogold localisation of protochlorophyllide oxidoreductase in barley etioplasts. Eur Cell Biol 39:50–55

    Google Scholar 

  • Sheramati I, Shahollari B, Landsberger M, Westermann M, Cherepneva G, Kusnetsov V, Oelmüller R (2004) Cytokinin stimulates polyribosome loading of nuclear-encoded mRNAs for the plastid ATP synthase in etioplasts of Lupinus luteus: the complex accumulates in the inner-envelope membrane with the CF1 moiety located towards the stromal space. Plant J 38:578–593

    Article  CAS  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  PubMed  CAS  Google Scholar 

  • Solymosi K, Vitányi B, Hideg É, Böddi B (2007) Etiolation symptoms in sunflower (Helianthus annuus) cotyledons partially covered by the pericarp of the achene. Annu Bot 99:857–867

    Article  CAS  Google Scholar 

  • Spano AJ, He Z, Michel H, Hunt DF, Timko MP (1992) Molecular cloning, nuclear gene structure, and developmental expression of NADPH:protochlorophyllide oxidoreductase in pea (Pisum sativum L.) Plant Mol Biol 18:967–972

    Article  PubMed  CAS  Google Scholar 

  • Sundqvist C, Dahlin C (1997) With chlorophyll pigments from prolamellar bodies to light-harvesting complexes. Physiol Plant 100:748–759

    Article  CAS  Google Scholar 

  • Timko MP (1993) Regulation of gene expression involved in chlorophyll and heme formation in higher plants. In: Lodha ML, Mehta SL, Ramagopal S, Srivastava GP (eds) Advances in plant biotechnology and biochemistry. Indian Soc Agril Biochemists, Kanpur, pp 9–19

    Google Scholar 

  • Virgin HI (1993) Effectiveness of light of different wavelengths to induce chlorophyll biosynthesis in rapidly and slowly greening tissues. Physiol Plant 89:761–766

    Article  CAS  Google Scholar 

  • von Zychlinski A, Kleffman T, Krishnamurthy N, Sjölander K, Baginsky S, Gruissem W (2005) Proteome analysis of the rice etioplast: metabolic and regulatory networks and novel protein functions. Mol Cell Proteomics 4:1072–1084

    Article  CAS  Google Scholar 

  • Wellburn AR (1982) Bioenergetic and ultrastructural changes associated with chloroplast development. Int Rev Cyt 80:133–191

    CAS  Google Scholar 

  • Wellburn AR, Quail PH, Gunning BES (1977) Examination of ribosome-like particles in isolated prolamellar bodies. Planta 134:45–52

    Article  Google Scholar 

  • Wellburn AR, Gounaris I, Owen JH, Laybourn-Parry EM, Wellburn FAM (1986) Development of bioenergetic function in light-grown seedlings. In: Akoyunoglou G, Senger H (eds) Regulation of chloroplast differentiation. A.R.Liss, New York, pp 371–381

    Google Scholar 

  • Widell-Wigge A, Selstam E (1990) Effects of salt wash on the structure of the prolamellar body membrane and the membrane binding of NADPH-protochlorophyllide oxidoreductase. Physiol Plant 78:315–323

    Article  CAS  Google Scholar 

  • Ytterberg J, Peltier J-B, van Wijk KJ (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140:984–997

    Article  PubMed  CAS  Google Scholar 

  • Zimmer JSD, Monroe ME, Qian W-J, Smith RD (2006) Advances in proteomics data analysis and display using an accurate mass and time tag approach. Mass Spectrom Rev 25:450–482

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Elisabet Carlsohn and Sjoerd van der Post at the Proteomics Core Facility, Göteborg University, for performing the MS analyses. This work was supported in part by the Royal Society of Arts and Sciences in Göteborg and the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa A. Blomqvist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blomqvist, L.A., Ryberg, M. & Sundqvist, C. Proteomic analysis of highly purified prolamellar bodies reveals their significance in chloroplast development. Photosynth Res 96, 37–50 (2008). https://doi.org/10.1007/s11120-007-9281-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9281-y

Keywords

Navigation