Skip to main content
Log in

Isolation of heat shock-induced Nicotiana tabacum transcription promoters and their potential as a tool for plant research and biotechnology

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Transcription promoters of heat shock protein (HSP) genes have been used to control the expression of heterologous proteins in plants and plant cells. To obtain a strong HSP promoter that is functionally active in Nicotiana tabacum BY-2 cells, we set out to identify a promoter of an endogenous gene showing high activation of expression by heat. An N. tabacum BY-2 cell culture was treated for 8 h at 37°C and the cell protein extract analyzed by two-dimensional electrophoresis. A major spot was identified by mass spectrometry as belonging to the small HSP family. The promoter regions and the 5′ and 3′ untranslated regions of two genes, NtHSP3A and NtHSP3B, with sequences fitting the protein identified were cloned and fused to a hybrid reporter gene coding for β-glucuronidase (GUS) and a yellow fluorescent protein. These constructs were introduced into N. tabacum BY2 cells by Agrobacterium tumefaciens-mediated transformation. Both promoters conferred similar heat-induced GUS expression. In the best heat shock condition, GUS activity was increased 200 fold and reached 285 pmol min−1 μg protein−1. Up-scaling in a 4-l bioreactor resulted in similar heat-induced expression. The NtHSP3A promoter was then used to drive the expression of NtPDR1, a plasma membrane transporter belonging to the pleiotropic drug resistance family. No expression was observed at 25°C, while, at 37°C, expression was similar to that obtained using a strong constitutive promoter. These data show that the HSP promoters isolated are useful for high heat-induced expression in N. tabacum BY-2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • An GH (1985) High-efficiency transformation of cultured tobacco cells. Plant Physiol 79(2):568–570

    Article  PubMed  CAS  Google Scholar 

  • Barcala M, Garcia A, Cubas P, Almoguera C, Jordano J, Fenoll C, Escobar C (2008) Distinct heat-shock element arrangements that mediate the heat shock, but not the late-embryogenesis induction of small heat-shock proteins, correlate with promoter activation in root-knot nematode feeding cells. Plant Mol Biol 66(1–2):151–164

    Article  PubMed  CAS  Google Scholar 

  • Barros MD, Czarnecka E, Gurley WB (1992) Mutational analysis of a plant heat-shock element. Plant Mol Biol 19(4):665–675

    Article  PubMed  CAS  Google Scholar 

  • Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LM, Yang W, Mayer JE, Roa-Rodriguez C, Jefferson RA (2005) Gene transfer to plants by diverse species of bacteria. Nature 433(7026):629–633

    Article  PubMed  CAS  Google Scholar 

  • Chen SC, Liu HW, Lee KT, Yamakawa T (2007) High-efficiency Agrobacterium rhizogenes-mediated transformation of heat inducible sHSP18.2-GUS in Nicotiana tabacum. Plant Cell Rep 26(1):29–37

    Article  PubMed  Google Scholar 

  • Crouzet J, Trombik T, Fraysse AS, Boutry M (2006) Organization and function of the plant pleiotropic drug resistance ABC transporter family. FEBS Lett 580(4):1123–1130

    Article  PubMed  CAS  Google Scholar 

  • Dansako T, Kato K, Satoh J, Sekine M, Yoshida K, Shinmyo A (2003) 5′ untranslated region of the HSP18.2 gene contributes to efficient translation in plant cells. J Biosci Bioeng 95(1):52–58

    PubMed  CAS  Google Scholar 

  • De Muynck B, Navarre C, Nizet Y, Stadlmann J, Boutry M (2009) Different subcellular localization and glycosylation for a functional antibody expressed in Nicotiana tabacum plants and suspension cells. Transgenic Res 18(3):467–482

    Article  PubMed  CAS  Google Scholar 

  • De Muynck B, Navarre C, Boutry M (2010) Production of antibodies in plants: status after twenty years. Plant Biotechnol J 8(5):529–563

    Article  PubMed  Google Scholar 

  • Degand H, Faber AM, Dauchot N, Mingeot D, Watillon B, Van Cutsem P, Morsomme P, Boutry M (2009) Proteomic analysis of chicory root identifies proteins typically involved in cold acclimation. Proteomics 9(10):2903–2907

    Article  PubMed  CAS  Google Scholar 

  • Duby G, Poreba W, Piotrowiak D, Bobik K, Derua R, Waelkens E, Boutry M (2009) Activation of plant plasma membrane H+-ATPase by 14-3-3 proteins is negatively controlled by two phosphorylation sites within the H+-ATPase C-terminal region. J Biol Chem 284(7):4213–4221

    Article  PubMed  CAS  Google Scholar 

  • Fekete RA, Miller MJ, Chattoraj DK (2003) Fluorescently labeled oligonucleotide extension: a rapid and quantitative protocol for primer extension. Biotechniques 35(1):90–94–97–98

    PubMed  Google Scholar 

  • Geelen DNV, Inze DG (2001) A bright future for the bright yellow-2 cell culture. Plant Physiol 127(4):1375–1379

    Article  PubMed  CAS  Google Scholar 

  • Georgiev MI, Weber J, Maciuk A (2009) Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl Microbiol Biotechnol 83(5):809–823

    Article  PubMed  CAS  Google Scholar 

  • Goderis IJWM, De Bolle MFC, Francois IEJA, Wouters PFJ, Broekaert WF, Cammue BPA (2002) A set of modular plant transformation vectors allowing flexible insertion of up to six expression units. Plant Mol Biol 50(1):17–27

    Article  PubMed  CAS  Google Scholar 

  • Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. Nat Biotechnol 22(11):1415–1422

    Article  PubMed  CAS  Google Scholar 

  • Huang TK, McDonald KA (2009) Bioreactor engineering for recombinant protein production in plant cell suspension cultures. Biochem Eng J 45(3):168–184

    Article  CAS  Google Scholar 

  • Lee KT, Chen SC, Chiang BL, Yamakawa T (2007) Heat-inducible production of β-glucuronidase in tobacco hairy root cultures. Appl Microbiol Biotechnol 73(5):1047–1053

    Article  PubMed  CAS  Google Scholar 

  • Menges M, Murray JAH (2004) Cryopreservation of transformed and wild-type Arabidopsis and tobacco cell suspension cultures. Plant J 37(4):635–644

    Article  PubMed  CAS  Google Scholar 

  • Moriwaki M, Yamakawa T, Washino T, Kodama T, Igarashi Y (1999) Delayed recovery of β-glucuronidase activity driven by an Arabidopsis heat shock promoter in heat-stressed transgenic Nicotiana plumbaginifolia. Plant Cell Rep 19(1):96–100

    Article  CAS  Google Scholar 

  • Morsomme P, Dambly S, Maudoux O, Boutry M (1998) Single point mutations distributed in 10 soluble and membrane regions of the Nicotiana plumbaginifolia plasma membrane PMA2 H+-ATPase activate the enzyme and modify the structure of the C-terminal region. J Biol Chem 273(52):34837–34842

    Article  PubMed  CAS  Google Scholar 

  • Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20(1):87–90

    Article  PubMed  CAS  Google Scholar 

  • Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell-line as the HeLa-cell in the cell biology of higher-plants. Int Rev Cytol 132:1–30

    Article  CAS  Google Scholar 

  • Nagaya S, Kawamura K, Shinmyo A, Kato K (2010) The HSP terminator of Arabidopsis thaliana increases gene expression in plant cells. Plant Cell Physiol 51(2):328–332

    Article  PubMed  CAS  Google Scholar 

  • Navarre C, Delannoy M, Lefebvre B, Nader J, Vanham D, Boutry M (2006) Expression and secretion of recombinant outer-surface protein A from the lyme disease agent, Borrelia burgdorferi, in Nicotiana tabacum suspension cells. Transgenic Res 15(3):325–335

    Article  PubMed  CAS  Google Scholar 

  • Nishizawa-Yokoi A, Yoshida E, Yabuta Y, Shigeoka S (2009) Analysis of the regulation of target genes by an Arabidopsis heat shock transcription factor, HsfA2. Biosci Biotechnol Biochem 73(4):890–895

    Article  PubMed  CAS  Google Scholar 

  • Quaedvlieg NE, Schlaman HR, Admiraal PC, Wijting SE, Stougaard J, Spaink HP (1998) Fusions between green fluorescent protein and β-glucuronidase as sensitive and vital bifunctional reporters in plants. Plant Mol Biol 37(4):715–727

    Article  PubMed  CAS  Google Scholar 

  • Saidi Y, Finka A, Chakhporanian M, Zryd JP, Schaefer DG, Goloubinoff P (2005) Controlled expression of recombinant proteins in Physcomitrella patens by a conditional heat-shock promoter: a tool for plant research and biotechnology. Plant Mol Biol 59(5):697–711

    Article  PubMed  CAS  Google Scholar 

  • Saidi Y, Domini M, Choy F, Zryd JP, Schwitzguebel JP, Goloubinoff P (2007) Activation of the heat shock response in plants by chlorophenols: transgenic Physcomitrella patens as a sensitive biosensor for organic pollutants. Plant Cell Environ 30(6):753–763

    Article  PubMed  CAS  Google Scholar 

  • Sasabe M, Toyoda K, Shiraishi T, Inagaki Y, Ichinose Y (2002) cDNA cloning and characterization of tobacco ABC transporter: NtPDR1 is a novel elicitor-responsive gene. FEBS Lett 518(1–3):164–168

    Article  PubMed  CAS  Google Scholar 

  • Shinmyo A, Shoji T, Bando E, Nagaya S, Nakai Y, Kato K, Sekine M, Yoshida K (1998) Metabolic engineering of cultured tobacco cells. Biotechnol Bioeng 58(2–3):329–332

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Naito S, Komeda Y (1992) The Arabidopsis hsp18.2 promoter/gus gene fusion in transgenic Arabidopsis plants—a powerful tool for the isolation of regulatory mutants of the heat-shock response. Plant J 2(5):751–761

    Article  CAS  Google Scholar 

  • van der Fits L, Deakin EA, Hoge JHC, Memelink J (2000) The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation. Plant Mol Biol 43(4):495–502

    Article  PubMed  Google Scholar 

  • Volkov RA, Panchuk II, Schoffl F (2005) Small heat shock proteins are differentially regulated during pollen development and following heat stress in tobacco. Plant Mol Biol 57(4):487–502

    Article  PubMed  CAS  Google Scholar 

  • Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute-solution in the presence of detergents and lipids. Anal Biochem 138(1):141–143

    Article  PubMed  CAS  Google Scholar 

  • Wilkie GS, Dickson KS, Gray NK (2003) Regulation of mRNA translation by 5′- and 3′-UTR-binding factors. Trends Biochem Sci 28(4):182–188

    Article  PubMed  CAS  Google Scholar 

  • Yi SY, Sun AQ, Sun Y, Yang JY, Zhao CM, Liu H (2006) Differential regulation of Lehsp23.8 in tomato plants: Analysis of a multiple stress-inducible promoter. Plant Sci 171(3):398–407

    Article  CAS  Google Scholar 

  • Yoshida K, Kasai T, Garcia MRC, Sawada S, Shoji T, Shimizu S, Yamazaki K, Komeda Y, Shinmyo A (1995) Heat-inducible expression system for a foreign gene in cultured tobacco cells using the HSP18.2 promoter of Arabidopsis thaliana. Appl Microbiol Biotechnol 44(3–4):466–472

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the Région Wallonne (Waleo1 011/4846, First Spinoff Cell2farm and Waleo3 08/1/6861), the Interuniversity Poles of Attraction Program (Belgian State, Scientific, Technical, and Cultural Services), the EU SMARTCELL program and the Belgian National Fund for Scientific Research. We thank Anne-Marie Faber, Hervé Degand and Pierre Morsomme for the mass spectrometry analysis and Marie-Christine Flamand and Bénédicte Purnelle for the electrophoregram analysis and the sequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Boutry.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navarre, C., Sallets, A., Gauthy, E. et al. Isolation of heat shock-induced Nicotiana tabacum transcription promoters and their potential as a tool for plant research and biotechnology. Transgenic Res 20, 799–810 (2011). https://doi.org/10.1007/s11248-010-9459-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-010-9459-5

Keywords

Navigation