Skip to main content
Log in

Comparison of the MpEF1α and CaMV35 promoters for application in Marchantia polymorpha overexpression studies

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Constitutive promoters are essential tools for analyses of gene functions by transgenic approaches. For overexpression and silencing studies of genes, a ubiquitous and strong expression of genes under investigation as well as selection markers is preferred. For future applications in the emerging basal plant model system Marchantia polymorpha, a liverwort, activities of the viral 35S cauliflower mosaic virus promoter and the endogenous elongation factor 1α (MpEF1α) promoter were analyzed. Expression of the reporter gene β-glucuronidase (GUS), driven by the CaMV35 and MpEF1α promoters, was compared throughout plant development. Significant differences were observed between the two promoter activities. The CaMV35 promoter yields a weak reporter gene expression in the meristematic zones but drives a strong expression in the thallus. The MpEF1α promoter causes a strong meristematic GUS expression and is more active in female sexual tissues. Overall, the MpEF1α promoter seems to be the better option for obtaining a strong and ubiquitous transgene expression. Furthermore, a whole mount in situ hybridization protocol for Marchantia was established. Analysis of MpEF1α mRNA transcript in intact, whole tissues showed an expression pattern that is overall similar to the pattern of the GUS reporter gene expression driven by the MpEF1α promoter, including strong expression in meristematic zones. The whole mount technique reported here can be used to determine the mRNA expression in intact gemmae and archegonia, and has the potential to be applied for screening large numbers of transgenic plants, for instance to identify knock-down mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aida R, Nagaya S, Yoshida K, Kishimoto S, Shibata M, Ohmiya A (2005) Efficent tansgene expression in chrysanthemum, Chrysanthemum morifolium Ramat., with the promotor of a gen for tobacco elongation factor 1α protein. JARQ 39:269–274

    Article  CAS  Google Scholar 

  • Barnes CR, Land WJG (1908) Bryological papers II. The origin of the cupule of Marchantia. Bot Gaz 46:404–409

    Article  Google Scholar 

  • Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease like regulator of root gravitropism. Science 273:948–950

    Article  CAS  PubMed  Google Scholar 

  • Bevan M (1984) Binary Agrobacterium tumefaciens vectors for plant transformation. Nucleic Acid Res 12:8711–8721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burgeff H (1943) Genetische Studien an Marchantia Einführung einer neuen Pflanzenfamilie in die genetische Wissenschaft. von Gustav Fischer, Jena

    Google Scholar 

  • Busch A, Zachgo S (2007) Control of corolla monosymmetry in the Brassicaceae Iberis amara. Proc Natl Acad Sci USA 104(42):16714–16719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clark RM, Nussbaum Wagler T, Quijada P, Doebley J (2006) A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nature Genet 38:594–597

    Article  CAS  PubMed  Google Scholar 

  • Coussens G, Aesaert S, Verelst W, Demeulenaere M, De Buck S, Njuguna E, Inze D, van Lijsebettens M (2012) Brachypodium distachyon promoters as efficient building blocks for transgenic research in maize. J Exp Bot 63:4263–4273

    Article  CAS  PubMed  Google Scholar 

  • Curie C, Liboz T, Montane M-H, Rouan D, Axelos M, Lescure B (1992) The activation process of Arabidopsis thaliana A1 gene encoding the translation elongation factor EF-1α is conserved among angiosperms. Plant Mol Biol 18:1083–1089

    Article  CAS  PubMed  Google Scholar 

  • Curie C, Axelos M, Bardet C, Atanassova R, Chanbet N, Lescur B (1993) Modular organization and developmental activity of an Arabidopsis thaliana EF-1α gene promoter. Mol Gen Genet 238:428–436

    Article  CAS  PubMed  Google Scholar 

  • Deblaere R, Bytebier B, De Greve H, Deboeck F, Schell J, Van Montagu M, Leemans J (1985) Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res 13:4777–4788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fiume E, Christou P, Giani S, Breviarno D (2004) Introns are key regulatory elements of rice tubulin expression. Planta 218:693–703

    Article  CAS  PubMed  Google Scholar 

  • Hamann T, Benková E, Bäurle I, Kientz M, Jürgens G (2002) The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev 16:1610–1615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hejátko J, Blilou I, Brewer PB, Friml J, Scheres B, Benková E (2006) In situ hybridization technique for mRNA detection in whole mount Arabidopsis samples. Nat Protoc 1:1939–1946

    Article  PubMed  Google Scholar 

  • Horstmann V, Huether CM, Jost W, Reski R, Decker EL (2004) Quantitative promoter analysis in Physcomitrella patens: a set of plant vectors activating gene expression within three orders of magnitude. BMC Biotechnol. doi:10.1186/1472-6750-4-13

    PubMed Central  PubMed  Google Scholar 

  • Hughes SJ (1971) On conidia of fungi, and gemmae of algae, bryophytes, and pteridophytes. Can J Bot 49:1319–1339

    Article  Google Scholar 

  • Ishizaki K, Chiyoda S, Yamato KT, Kohchi T (2008) Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology. Plant Cell Physiol 49(7):1084–1091

    Article  CAS  PubMed  Google Scholar 

  • Ishizaki K, Johzuka-Hisatomi Y, Ishida S, Iida S, Kohchi T (2013) Homologous recombination-mediated gene targeting in the liverwort Marchantia polymorpha L. Sci Rep 25(3):1532

    Google Scholar 

  • Kubota A, Ishizaki K, Hosaka M, Kohchi T (2013) Efficient Agrobacterium-mediated transformation of the Liverwort Marchantia polymorpha using regenerating thalli. Biosci Biotechnol Biochem 77:167–172

    Article  CAS  PubMed  Google Scholar 

  • Last DI, Brettell RIS, Chamberlain DA, Chaudhury AM, Larkin PJ, Marsh EL, Peacock WJ, Dennis ES (1991) pEmu: an improved promoter for gene expression in cereal cells. Theor Appl Genet 81:581–588

    Article  CAS  PubMed  Google Scholar 

  • McElroy D, Brettell RI (1994) Foreign gene expression in transgenic cereals. Trends Biotechnol 12:62–68

    Article  CAS  Google Scholar 

  • Nakagawa T, Kurose T, Hino T, Tanake K, Kawamukai M, Niwa Y, Toyooka K, Matsuoka K, Jimbo T, Kimura T (2007) Development of a series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng 104:34–41

    Article  CAS  PubMed  Google Scholar 

  • Oda K, Yamato K, Ohta E, Takemura YNM, Nozato N, Akashi K, Kanegae T, Ogura Y, Kohchi T, Ohyama K (1992) Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA: a primitive form of plant mitochondrial genome. J Mol Biol 223:1–7

    Article  CAS  PubMed  Google Scholar 

  • Odell JT, Nagy F, Chua N-H (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812

    Article  CAS  PubMed  Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchanita polymorpha chloroplast DNA. Nature 332:572–574

    Article  Google Scholar 

  • Ohyama K, Takemura M, Oda K, Fukuzawa H, Kohchi T, Nakayama S, Ishizaki K, Kubota A, Hosaka M, Kohchi T (2013) Efficient agrobacterium-mediated transformation of the Liverwort Marchantia polymorpha using regenerating thalli. Biosci Biotechnol Biochem 77:167–172

    Article  Google Scholar 

  • Okada S, Fujisawa M, Sone T, Nakayama S, Nishiyama R, Takenaka M, Yamaoka S, Sakaida M, Kono K, Takahama M, Yamato KT, Fukuzawa H, Brennicke A, Ohyama K (2000) Construction of male and female PAC genomic libraries suitable for identification of Y-chromosome-specific clones from the liverwort, Marchantia polymorpha. Plant J 24:421–428

    Article  CAS  PubMed  Google Scholar 

  • Okada S, Sone T, Fujisawa M, Nakayama S, Takenaka M, Ishizaki K, Kono K, Shimizu-Ueda Y, Hanajiri T, Yamato KT, Fukuzawa H, Brennicke A, Ohyama K (2001) The Y chromosome in the liverwort Marchantia polymorpha has accumulated unique repeat sequences harboring a male-specific gene. Proc Natl Acad Sci USA 98:9454–9459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qiu Y-L, Li L, Wang B, Chen Z, Knoop V, Groth-Malonek M, Dombrovska O, Lee J, Kent L, Rest J, Estabrook GF, Hendry TA, Taylor DW, Test CM, Ambros M, Crandall-Stotler G, Duff RJ, Stech M, Frey W, Quandt D, Davis CC (2006) The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci USA 103:15511–15516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schledzewski K, Mendel R (1994) Quantitative transient gene expression: comparison of the promoters for maize polyubiquitinl, rice actinl, maize-derived Emu and CaMV 35S in cells of barley, maize and tobacco. Transgenic Res 3:249–255

    Article  CAS  Google Scholar 

  • Scholthof HB, Scholthof K-BG, Jackson AO (1996) Plant virus gene vectors for transient expression of foreign proteins in plants. Annu Rev Phytopathol 34:299–323

    Article  CAS  PubMed  Google Scholar 

  • Ursin VM, Irvine JM, Hiatt WR, Shewmaker CK (1991) Developmental analysis of elongation factor-1 alpha expression in transgenic tobacco. Plant Cell 3:583–591

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamato KT, Ishizaki K, Fujisawa M et al (2007) Gene organization of the liverwort Y chromosome reveals distinct sex chromosome evolution in a haploid system. Proc Natl Acad Sci USA 104:6472–6477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zachgo S (2002) In situ hybridization. In: Gilmartin PM, Blower C (eds) Molecular plant biology. Oxford University Press, Oxford, pp 41–63

    Google Scholar 

  • Zachgo S, Perbal MC, Saedler H, Schwarz-Sommer Z (2000) In situ analysis of RNA and protein expression in whole mounts facilitates detection of floral gene expression dynamics. Plant J 23:697–702

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The pGWB2 and pGWB3 vectors (Nakagawa et al. 2007) were a kind gift of Tsuyoshi Nakagawa, Research Institute of Molecular Genetics, Shimane University, Japan. This work was supported by the Deutsche Forschungsgemeinschaft (ZA259/4 to S.Z.). We are grateful for ongoing support from the Botanical Garden of Osnabrück in cultivating Marchantia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Zachgo.

Additional information

Felix Althoff, Sarah Kopischke, and Oliver Zobell have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Althoff, F., Kopischke, S., Zobell, O. et al. Comparison of the MpEF1α and CaMV35 promoters for application in Marchantia polymorpha overexpression studies. Transgenic Res 23, 235–244 (2014). https://doi.org/10.1007/s11248-013-9746-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-013-9746-z

Keywords

Navigation