Skip to main content
Log in

Comparison of the epidemiological behavior of mastitis pathogens by applying time-series analysis in results of milk samples submitted for microbiological examination

  • Original Article
  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

The objective of this study is to examine and compare the trends of mastitis pathogens in quarter milk samples (n = 240,232) submitted for microbiological examination at the Milk Analysis Laboratory (L.I.G.A.L.) at Galicia, Spain from June 2005 to September 2011. Autoregressive Integrated Moving Average (ARIMA) models and multivariate statistical techniques such as Cluster Analysis were used in order to detect seasonal trends and similarities between the series trends and to classify mastitis pathogens into relatively homogeneous groups. The decrease of bulk milk somatic cell counts achieved by the mastitis control program, developed in recent years in this region, is the result of the decrease in IMI caused by a limited number of mastitis pathogens. The obtained results reflect a greater complexity in the behavior of mastitis pathogens, unlike the traditional classification into contagious or environmental. Staphylococcus aureus showed a trend similar to Streptococcus dysgalactiae, a mastitis pathogen can behave in both a contagious and an environmental manner. Among the traditionally considered environmental mastitis pathogens, Strep. uberis showed a different behavior to Escherichia coli and Klebsiella pneumoniae. Coagulase-negative staphylococci (CNS) species and Streptococcus other than Strep. agalactiae showed differences in the trend model. Time-series analysis and multivariate statistical techniques, such as Cluster Analysis, could be powerful tools to assess the isolation trend of mastitis pathogens because of their ability to cope with stochastic dependence of consecutive data. Furthermore, they could be used to identify the epidemiological behavior of mastitis pathogens using the results of milk samples submitted for routine microbiological examination, by classifying them into relatively homogeneous groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aarestrup FM, Larsen HD, Jensen NE (1999) Characterization of Staphylococcus simulans strains from cases of bovine mastitis. Vet Microbiol 66:165–170

    Article  PubMed  CAS  Google Scholar 

  • Andersen HJ, Pedersen LH, Aarestrup FM, Chriél M (2003) Evaluation of the surveillance programme of Streptococcus agalactiae in Danish dairy herds. J Dairy Sci 86:1233–1239

    Article  PubMed  CAS  Google Scholar 

  • Barkema HW, Schukken YH, Lam TJGM, Beiboer ML, Benedictus G, Brand A (1999) Management practices associated with the incidence rate of clinical mastitis. J Dairy Sci 82:1643–1654

    Article  PubMed  CAS  Google Scholar 

  • Box GEP, Jenkins GM (1976) Time series analysis: forecasting and control. Holden Day, San Francisco, pp 181–218

    Google Scholar 

  • Bradley AJ (2002) Bovine mastitis: an evolving disease. Vet J 164:116–128

    Article  PubMed  CAS  Google Scholar 

  • Bradley AJ, Leach KA, Breen JE, Green LE, Green MJ (2007) Survey of the incidence and aetiology of mastitis on dairy farms in England and Wales. Vet Rec 160:253–257

    Article  PubMed  CAS  Google Scholar 

  • Capurro A, Aspán A, Unnerstad HR, Waller KP, Artursson K (2010) Identification of potential sources of Staphylococcus aureus mastitis problems. J Dairy Sci 93:180–191

    Article  PubMed  CAS  Google Scholar 

  • Chan K, Ripley B (2012) TSA: time series analysis, http://cran.r-project.org/web/packages/TSA/index.html (accessed 13.06.12)

  • Chatzigeorgiou KS, Sergentanis TN, Tsiodras S, Hamodrakas SJ, Bagos PG (2011) Phoenix 100 versus Vitek 2 in the identification of Gram-Positive and Gram-Negative bacteria: a comprehensive meta-analysis. J Clin Microbiol 49:3284–3291

    Article  PubMed  Google Scholar 

  • Delmas J, Chacornac JP, Robin F, Giammarinaro P, Talon R, Bonnet R (2008) Evaluation of the Vitek 2 system with a variety of Staphylococcus species. J Clin Microbiol 46:311–313

    Article  PubMed  Google Scholar 

  • Devriese LS, de Keyser H (1980) Prevalence of different species of coagulase-negative staphylococci on teats and milk samples from dairy cows. J Dairy Res 47:155–158

    Article  PubMed  CAS  Google Scholar 

  • Everitt BS (2005) An R and S-PLUS companion to multivariate analysis. Springer, London

    Book  Google Scholar 

  • Fraley C, Raftery A, Scrucca L (2012) mclust: normal mixture modeling for model-based clustering, classification, and density estimation, http://cran.r-project.org/web/packages/mclust/index.html (accessed 13.06.12)

  • Gillespie BE, Headrick SI, Boonyayatra S, Oliver SP (2009) Prevalence and persistence of coagulase-negative Staphylococcus species in three dairy research herds. Vet Microbiol 134:65–72

    Article  PubMed  CAS  Google Scholar 

  • Haveri M, Hovinen M, Roslof A, Pyorala S (2008) Molecular types and genetic profiles of Staphylococcus aureus isolated from bovine intramammary infection and extramammary sites. J Clin Microbiol 46:3728–3735

    Article  PubMed  CAS  Google Scholar 

  • Hogan JS, Smith KL (2003) Coliform mastitis. Vet Res 34:507–519

    Article  PubMed  Google Scholar 

  • Hogan JS, Gonzalez RN, Harmon RJ, Nickerson SC, Oliver SP, Pankey JW, Smith KL (1999) Laboratory handbook on bovine mastitis. National Mastitis Council, Inc., Madison

    Google Scholar 

  • Hyndman RJ. Forecast: forecasting functions for time series and linear models, http://cran.r-project.org/web/packages/forecast/index.html (accessed 13.06.12)

  • Jagielski T, Lassa H, Ahrholdt J, Malinowski E, Roesler U (2011) Genotiping of bovine Prototheca mastitis isolates from Poland. Vet Microbiol 149:283–287

    Article  PubMed  Google Scholar 

  • Krukowski H, Lisowski A, Skòrka A (2006) Yeast and algae isolated from cows with mastitis in the Southeastern part of Poland. Pol J Vet Sci 9:181–184

    PubMed  CAS  Google Scholar 

  • Makovec JA, Ruegg PL (2003) Results of milk samples submitted for microbiological examination in Wisconsin from 1994 to 2001. J Dairy Sci 86:3466–3472

    Article  PubMed  CAS  Google Scholar 

  • Marco JC, Rodríguez M, González M, Ziluaga I, Salazar LM, Palomino A, Méndez A, Díaz A, Fernández G (1998) Bovis nº85. Mamitis bovina y calidad de la leche (I), Etiología de las mamitis bovinas en España. Grupo Luzán 5, Madrid, pp 13–31

  • Matos JS, White GG, Harmon RJ, Langlois BE (1991) Isolation of Staphylococcus aureus from sites other than the lactating mammary gland. J Dairy Sci 74:1544–1549

    Article  PubMed  CAS  Google Scholar 

  • Milne MH, Biggs AM, Barrett DC, Young FJ, Doherty S, Innocent GT, Fitzpatrick JL (2005) Treatment of persistent intramammary infections with Streptococcus uberis in dairy cows. Vet Rec 157:245–250

    PubMed  CAS  Google Scholar 

  • Munoz MA, Ahlström C, Rauch BJ, Zadoks RN (2006) Fecal shedding of Klebsiella pneumoniae by dairy cows. J Dairy Sci 89:3425–3430

    Article  PubMed  CAS  Google Scholar 

  • Myllys V, Asplund K, Brofeldt E, Hirvelä-Koski V, Honkanen-Buzalski T, Junttila J, Kulkas L, Myllykangas O, Niskanen M, Saloniemi H, Sandholm M, Saranpää T (1998) Bovine mastitis in Finland in 1988 and 1995: changes in prevalence and antimicrobial resistance. Acta Vet Scand 39:119–126

    PubMed  CAS  Google Scholar 

  • Nam HM, Lim SK, Kang HM, Kim JM, Moon JS, Jang GC, Kim JM, Joo YS, Jung SC (2009) Prevalence and antimicrobial susceptibility of gram-negative bacteria isolated from bovine mastitis between 2003 and 2008 in Korea. J Dairy Sci 92:2020–2026

    Article  PubMed  CAS  Google Scholar 

  • Nemeth J, Muckle CA, Gyles CL (1994) In vitro comparison of bovine mastitis and fecal Escherichia coli isolates. Vet Microbiol 40:231–238

    Article  PubMed  CAS  Google Scholar 

  • Østerås O, Sølverød L, Reksen O (2006) Milk culture results in a large Norwegian survey-effects of season, parity, days in milk, resistance, and clustering. J Dairy Sci 89:1010–1023

    Article  PubMed  Google Scholar 

  • Petersson-Wolfe CS, Adams S, Wolf SL, Hogan JS (2008) Genomic typing of enterococci isolated from bovine mammary glands and environmental sources. J Dairy Sci 91:615–619

    Article  PubMed  CAS  Google Scholar 

  • Piepers S, De Meulemeester L, De Kruijff A, Opsomer G, Barkema HW, De Vliegher S (2007) Prevalence and distribution of mastitis pathogens in subclinically infected dairy cows in Flanders, Belgium. J Dairy Res 74:478–483

    Article  PubMed  CAS  Google Scholar 

  • Piessens V, Coillie V, Verbist B, Supré K, Braem G, Van Nuffel A, De Vuyst L, Heyndrickx M, De Vliegher S (2011) Distribution of coagulase-negative Staphylococcus species from milk and environment of dairy cows differs between herds. J Dairy Sci 94:2933–2944

    Article  PubMed  CAS  Google Scholar 

  • Piessens V, De Vliegher S, Verbist B, Braem G, Van Nuffel A, De Vuyst L, Heyndrickx M, Van Coillie E (2012) Intra-species diversity and epidemiology varies among coagulase-negative Staphylococcus species causing bovine intramammary infections. Vet Microbiol 155:62–71

    Article  PubMed  CAS  Google Scholar 

  • Pullinger GD, Coffey TJ, Maiden MC, Leigh JA (2007) Multilocus-sequence typing analysis reveals similar populations of Streptococcus uberis are responsible for bovine intramammary infections of short and long duration. Vet Microbiol 119:194–204

    Article  PubMed  CAS  Google Scholar 

  • Ruegg L (2009) The quest for the perfect test: phenotypic versus genotypic identification of coagulase-negative staphylococci associated with bovine mastitis. Vet Microbiol 134:15–19

    Article  PubMed  CAS  Google Scholar 

  • Sampimon OC, Barkema HW, Berends IMGA, Sol J, Lam TJGM (2009) Prevalence and herd-level risk factors for intramammary infection with coagulase-negative staphylococci in Dutch dairy herds. Vet Microbiol 134:37–44

    Article  PubMed  CAS  Google Scholar 

  • Sawant AA, Gillespie BE, Oliver SP (2009) Antimicrobial susceptibility of coagulase-negative Staphylococcus species isolated from bovine milk. Vet Microbiol 134:73–81

    Article  PubMed  CAS  Google Scholar 

  • Scaccabarozzi L, Locateli C, Pisoni G, Manarolla G, Casula A, Bronzo V, Moroni P (2011) Short communication: epidemiology and genotyping of Candida rugosa strains responsable for persistent intramammary infections in dairy cows. J Dairy Sci 94:4574–4577

    Article  PubMed  CAS  Google Scholar 

  • Shumway RH, Stoffer DS (2006) Time series analysis and its applications. With R examples. Springer, New York

    Google Scholar 

  • Smith KL, Hogan JS (1995) Epidemiology of mamitis. In: Proceedings of The 3rd International Mamitis Seminar, Tel Aviv, Israel, pp 3–12

  • Sommerhäuser J, Kloppert B, Wolter W, Zschöck M, Sobiraj A, Failing K (2003) The epidemiology of Staphylococcus aureus infections from subclinical mastitis in dairy cows during a control programme. Vet Microbiol 96:91–102

    Article  PubMed  Google Scholar 

  • Supré K, Haesebrouk F, Zadoks RN, Vaneechoutte M, Piepers S, De Vliegher S (2011) Some CNS species are affecting udder health more than others. J Dairy Sci 94:2329–2340

    Article  PubMed  Google Scholar 

  • Taponen S, Björkroth J, Pyörälä S (2008) Coagulase-negative staphylococci isolated from bovine extramammary sites and intramammary infections in a single dairy herd. J Dairy Res 75:422–429

    Article  PubMed  CAS  Google Scholar 

  • Tenhagen BA, Koster G, Wallmann J, Heuwieser W (2006) Prevalence of mastitis pathogens and their resistance against antimicrobial agents in dairy cows in Brandenburg, Germany. J Dairy Sci 89:2542–2551

    Article  PubMed  CAS  Google Scholar 

  • Thorberg BM, Kuhn I, Aarestrup FM, Brandstrom B, Jonsson P, Danielsson-Tharn ML (2006) Pheno- and genotyping of Staphylococcus epidermidis isolated from bovine milk and human skin. Vet Microbiol 115:163–172

    Article  PubMed  CAS  Google Scholar 

  • Todhunter DA, Smith KL, Hogan JS, Schoenberger PS (1991) Gram-negative bacterial infections of the mammary gland in cows. Am J Vet Res 52:184–188

    PubMed  CAS  Google Scholar 

  • Vilar-Fernández JM, González-Manteiga W (2004) Nonparametric comparison of curves with dependent errors. Stat: J Theor Appl Stat 38(2):81–99

    Google Scholar 

  • Watts JL (1988) Etiological agents of bovine mastitis. Vet Microbiol 16:41–66

    Article  PubMed  CAS  Google Scholar 

  • Wuertz D, Chalabi Y (2012) timeSeries: Rmetrics - financial time series objects, http://cran.r-project.org/web/packages/timeSeries/index.html (accessed 13.06.12)

  • Zadoks RN, Gillespie BE, Barkema HW, Sampimon OC, Oliver SP, Schukken YH (2003) Clinical, epidemiological and molecular characteristics of Streptococcus uberis infections in dairy herds. Epidemiol Infect 130:335–349

    Article  PubMed  CAS  Google Scholar 

  • Zadoks RN, Griffiths HM, Munoz MA, Ahlstrom C, Bennett GJ, Thomas E, Schukken YH (2011a) Sources of Klebsiella and Raoultella species on dairy farms: be careful where you walk. J Dairy Sci 94:1045–1051

    Article  PubMed  CAS  Google Scholar 

  • Zadoks RN, Middleton JR, McDougall S, Katholm J, Schukken YH (2011b) Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. J Mammary Gland Biol Neoplasia 16:357–372

    Article  PubMed  Google Scholar 

  • Zeger SL, Irizarry R, Peng RD (2006) On time series analsysis of public health and biomedical data. Annu Rev Public Health 27:57–79

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Galician dairy cattle producers and to the Galician veterinarians working in establishing effective mastitis control program, without whose work it would not have been possible to conduct this study, and Consolidating and Structuring Competitive Research Groups Program (CN2012/326, Xunta de Galicia).

Conflict of interest statement

None of the authors of this paper has a financial or personal relationship with other people or organisations that could inappropriately influence or bias the content of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Lago.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, G., Barreal, M.L., Pombo, M.B. et al. Comparison of the epidemiological behavior of mastitis pathogens by applying time-series analysis in results of milk samples submitted for microbiological examination. Vet Res Commun 37, 259–267 (2013). https://doi.org/10.1007/s11259-013-9570-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11259-013-9570-1

Keywords

Navigation