Skip to main content
Log in

Molecular cloning, genetic organization of gene cluster encoding phenol hydroxylase and catechol 2,3-dioxygenase in Alcaligenes faecalis IS-46

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Alcaligenes faecalis IS-46 can utilize phenol as the sole carbon and energy source at concentration up to 1000 mg/l. In this report we created a cosmid library of this strain and the two clones specifying the whole L-46d type of phenol hydroxylase gene cluster were identified and characterized. Sequence analysis revealed that although the overall gene organization of the clusters was quite similar, few coding sequences differed or were found to have two copies compared with other source organisms. One of these coding sequences showed a good protein sequence similarity to a hypothetical protein and one matched with a regulatory protein of the LysR system. Their putative role in phenol degradation was discussed. Bioinformatic analysis suggested tentative phylogenetic assignments of the retrieved clusters. This work described for first time the complete nucleotide sequence and genetic organization of the whole phenol hydroxylase gene cluster in A. faecalis species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PH:

Phenol hydroxylase

mPH:

Multicomponent phenol hydroxylase

LmPH:

The largest subunit of the multicomponent phenol hydroxylase

C23O:

Catechol 2,3-dioxygenase

CatA:

Catechol 1,2-dioxygenase

2-HMS:

2-Hydroxymuconic semialdehyde

ORF:

Open reading frame

IS:

Insertion sequences

References

  • Arai H, Akahira S, Ohishi T, Maeda M, Kudo T (1998) Adaptation of Comamonas testosteroni TA441 to utilize phenol: organization and regulation of the genes involved in phenol degradation. Microbiology 144:2895–2903

    CAS  Google Scholar 

  • Arai H, Ohishi T, Chang MY, Kudo T (2000) Arrangement and regulation of the genes for meta-pathway enzymes required for degradation of phenol in Comamonas testosteroni TA441. Microbiology 146:1707–1715

    CAS  Google Scholar 

  • Cadieux E, Vrajmasu V, Achim C, Powlowski J, Münck E (2002) Biochemical, Mössbauer, and EPR studies of the diiron cluster of phenol hydroxylase from Pseudomonas sp. strain CF600. Biochemistry 41:10680–10691

    Article  CAS  Google Scholar 

  • Cafaro V, Izzo V, Scognamiglio R, Notomista E, Capasso P, Casbarra A, Pucci P, Di Donato A (2004) Phenol hydroxylase and toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1: interplay between two enzymes. Appl Environ Microbiol 70:2211–2219

    Article  CAS  Google Scholar 

  • Di Gioia D, Peel M, Fava F, Wyndham RC (1998) Structures of homologous composite transposons carrying cbaABC genes from Europe and North America. Appl Environ Microbiol 64:1940–1946

    CAS  Google Scholar 

  • Divari S, Valetti F, Caposio P, Pessione E, Cavaletto M, Griva E, Gribaudo G, Gilardi G, Giunta C (2003) The oxygenase component of phenol hydroxylase from Acinetobacter radioresistens S13. Eur J Biochem 270:2244–2253

    Article  CAS  Google Scholar 

  • Duffner FM, Muller R (1998) A novel phenol hydroxylase and catechol 2,3-dioxygenase from the thermophilic Bacillus thermoleovorans strain A2: nucleotide sequence and analysis of the genes. FEMS Microbiol Lett 161:37–45

    Article  CAS  Google Scholar 

  • Ehrt S, Schirmer F, Hillen W (1995) Genetic organization, nucleotide sequence and regulation of expression of genes encoding phenol hydroxylase and catechol 1,2-dioxygenase in Acinetobacter calcoaceticus NCIB8250. Mol Microbiol 18:13–20

    Article  CAS  Google Scholar 

  • Folsom BR, Chapman PJ, Pritchard PH (1990) Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates. Appl Environ Microbiol 56:1279–1285

    CAS  Google Scholar 

  • Futamata H, Harayama S, Watanabe K (2001) Group-specific monitoring of phenol hydroxylase genes for a functional assessment of phenol-stimulated trichloroethylene bioremediation. Appl Environ Microbiol 67:4671–4677

    Article  CAS  Google Scholar 

  • Herrmann H, Muller C, Schmidt I, Mahnke J, Petruschka L, Hahnke K (1995) Localization and organization of phenol degradation genes of Pseudomonas putida strain H. Mol Gen Genet 247:240–246

    Article  CAS  Google Scholar 

  • Hino S, Watanabe K, Takahashi N (1998) Phenol hydroxylase cloned from Ralstonia eutropha strain E2 exhibits novel kinetic properties. Microbiology 144:1765–1772

    Article  CAS  Google Scholar 

  • Jeong JJ, Kim JH, Kim CK, Hwang I, Lee K (2003) 3- and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28: genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2,3-dioxygenase. Microbiology 149:3265–3277

    Article  CAS  Google Scholar 

  • Jiang Y, Wen J, Caiyin Q, Lin L, Hu Z (2006) Mutant AFM 2 of Alcaligenes faecalis for phenol biodegradation using He-Ne laser irradiation. Chemosphere 65:1236–1241

    Article  CAS  Google Scholar 

  • Johnson GR, Olsen RH (1995) Nucleotide sequence analysis of genes encoding a toluene/benzene-2-monooxygenase from Pseudomonas sp. strain JS150. Appl Environ Microbiol 61:3336–3346

    CAS  Google Scholar 

  • Kahng HY, Malinverni JC, Majko MM, Kukor JJ (2001) Genetic and functional analysis of the tbc operons for catabolism of alkyl- and chloroaromatic compounds in Burkholderia sp. strain JS150. Appl Environ Microbiol 67:4805–4816

    Article  CAS  Google Scholar 

  • Keen NT, Tamaki S, Kobayashi D, Trollinger D (1988) Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70:191–197

    Article  CAS  Google Scholar 

  • Kim IC, Oriel PJ (1995) Characterization of the Bacillus stearothermophilus BR219 phenol hydroxylase gene. Appl Environ Microbiol 61:1252–1256

    CAS  Google Scholar 

  • Kim Y, Ayoubi P, Harker AR (1996) Constitutive expression of the cloned phenol hydroxylase gene(s) from Alcaligenes eutrophus JMP134 and concomitant trichloroethylene oxidation. Appl Environ Microbiol 62:3227–3233

    CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  CAS  Google Scholar 

  • Liang Q, Takeo M, Chen M, Zhang W, Xu Y, Lin M (2005) Chromosome-encoded gene cluster for the metabolic pathway that converts aniline to TCA-cycle intermediates in Delftia tsuruhatensis AD9. Microbiology 151:3435–3446

    Article  CAS  Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  • Merimaa M, Heinaru E, Liivak M, Vedler E, Heinaru A (2006) Grouping of phenol hydroxylase and catechol 2,3-dioxygenase genes among phenol- and p-cresol-degrading Pseudomonas species and biotypes. Arch Microbiol 186:287–296

    Article  CAS  Google Scholar 

  • Nakamura K, Ishida H, Iizumi T (2000) Constitutive trichloroethylene degradation led by tac promoter chromosomally integrated upstream of phenol hydroxylase genes of Ralstonia sp. KN1 and its nucleotide sequence analysis. J Biosci Bioeng 89:47–54

    Article  CAS  Google Scholar 

  • Ng LC, Shingler V, Sze CC, Poh CL (1994) Cloning and sequences of the first eight genes of the chromosomally encoded (methyl) phenol degradation pathway from Pseudomonas putida P35X. Gene 151:29–36

    Article  CAS  Google Scholar 

  • Nojiri H, Shintani M, Omori T (2004) Divergence of mobile genetic elements involved in the distribution of xenobiotic-catabolic capacity. Appl Microbiol Biotechnol 64:154–174

    Article  CAS  Google Scholar 

  • Nordlund I, Powlowski J, Shingler V (1990) Complete nucleotide sequence and polypeptide analysis of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J Bacteriol 172:6826–6833

    CAS  Google Scholar 

  • Peters M, Heinaru E, Talpsep E, Wand H, Stottmeister U, Heinaru A, Nurk A (1997) Acquisition of a deliberately introduced phenol degradation operon, pheBA, by different indigenous Pseudomonas species. Appl Environ Microbiol 63:4899–4906

    CAS  Google Scholar 

  • Polissi A, Harayama S (1993) In vivo reactivation of catechol 2,3-dioxygenase mediated by a chloroplast-type ferredoxin: a bacterial strategy to expand the substrate specificity of aromatic degradative pathways. EMBO J 12:3339–3347

    CAS  Google Scholar 

  • Rehfuss M, Urban J (2005) Alcaligenes faecalis subsp. phenolicus subsp. nov. a phenol-degrading, denitrifying bacterium isolated from a graywater bioprocessor. Syst Appl Microbiol 28:421–429

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Santos PM, Sá-Correia I (2007) Characterization of the unique organization and co-regulation of a gene cluster required for phenol and benzene catabolism in Pseudomonas sp. M1. J Biotechnol 131:371–378

    Article  CAS  Google Scholar 

  • Shingler V, Powlowski J, Marklund U (1992) Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J Bacteriol 174:711–724

    CAS  Google Scholar 

  • Springael D, Ryngaert A, Merlin C, Toussaint A, Mergeay M (2001) Occurrence of Tn4371-related mobile elements and sequences in (chloro) biphenyl-degrading bacteria. Appl Environ Microbiol 67:42–50

    Article  CAS  Google Scholar 

  • Takeo M, Maeda Y, Okada H, Miyama K, Mori K, Ike M, Fujita M (1995) Molecular cloning and sequencing of the phenol hydroxylase gene from Pseudomonas putida BH. J Ferment Bioeng 79:485–488

    Article  CAS  Google Scholar 

  • Takeo M, Prabu SK, Kitamura C, Hirai M, Takahashi H, Kato D, Negoro S (2006) Characterization of alkylphenol degradation gene cluster in Pseudomonas putida MT4 and evidence of oxidation of alkylphenols and alkylcatechols with medium-length alkyl chain. J Biosci Bioeng 102:352–361

    Article  CAS  Google Scholar 

  • Tan HM (1999) Bacterial catabolic transposons. Appl Microbiol Biotechnol 51:1–12

    Article  CAS  Google Scholar 

  • Teramoto M, Futamata H, Harayama S, Watanabe K (1999) Characterization of a high-affinity phenol hydroxylase from Comamonas testosteroni R5 by gene cloning, and expression in Pseudomonas aeruginosa PAO1c. Mol Gen Genet 262:552–558

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  • Top EM, Springael D (2003) The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol 14:262–269

    Article  CAS  Google Scholar 

  • Watanabe K, Futamata H, Harayama S (2002) Understanding the diversity in catabolic potential of microorganisms for the development of bioremediation strategies. Antonie Van Leeuwenhoek 81:655–663

    Article  CAS  Google Scholar 

  • Watanabe K, Hino S, Onodera K, Kajie SI, Takahashi N (1996) Diversity in kinetics of bacterial phenol-oxygenating activity. J Ferment bioeng 81:560–563

    Article  CAS  Google Scholar 

  • Watanabe K, Teramoto M, Futamata H, Harayama S (1998) Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge. Appl Environ Microbiol 64:4396–4402

    CAS  Google Scholar 

  • Xu Y, Chen M, Zhang W, Lin M (2003) Genetic organization of genes encoding phenol hydroxylase, benzoate 1,2-dioxygenase alpha subunit and its regulatory proteins in Acinetobacter calcoaceticus PHEA-2. Curr Microbiol 46:235–240

    Article  CAS  Google Scholar 

  • Zhang X, Gao P, Chao Q, Wang L, Senior E, Zhao L (2004) Microdiversity of phenol hydroxylase genes among phenol-degrading isolates of Alcaligenes sp. from an activated sludge system. FEMS Microbiol Lett 237:369–375

    CAS  Google Scholar 

  • Zouari H, Moukha S, Labat M, Sayadi S (2002) Cloning and sequencing of a phenol hydroxylase gene of Pseudomonas pseudoalcaligenes strain MH1: a bacterium able to mineralize various aromatic compounds. Appl Biochem Biotechnol 102–103:261–276

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from the National Natural Science Foundation of China (30470061 and 20677041) and the Shanghai Rhone-Alpes bilateral collaboration project of Shanghai Municipal Committee of Science and Technology (05SR07107). The authors thank Dr. He Xinyi and Dr. Zhang Yan for recommendation of gene cloning and screening protocols, Dr. Zhang Xueli (Univ. of Florida, USA) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, C., Zhang, L. & Zhao, L. Molecular cloning, genetic organization of gene cluster encoding phenol hydroxylase and catechol 2,3-dioxygenase in Alcaligenes faecalis IS-46. World J Microbiol Biotechnol 24, 1687–1695 (2008). https://doi.org/10.1007/s11274-008-9660-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-008-9660-3

Keywords

Navigation