Skip to main content
Log in

Extracellular ATP and other nucleotides—ubiquitous triggers of intercellular messenger release

  • Review Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Extracellular nucleotides, and ATP in particular, are cellular signal substances involved in the control of numerous (patho)physiological mechanisms. They provoke nucleotide receptor-mediated mechanisms in select target cells. But nucleotides can considerably expand their range of action. They function as primary messengers in intercellular communication by stimulating the release of other extracellular messenger substances. These in turn activate additional cellular mechanisms through their own receptors. While this applies also to other extracellular messengers, its omnipresence in the vertebrate organism is an outstanding feature of nucleotide signaling. Intercellular messenger substances released by nucleotides include neurotransmitters, hormones, growth factors, a considerable variety of other proteins including enzymes, numerous cytokines, lipid mediators, nitric oxide, and reactive oxygen species. Moreover, nucleotides activate or co-activate growth factor receptors. In the case of hormone release, the initially paracrine or autocrine nucleotide-mediated signal spreads through to the entire organism. The examples highlighted in this commentary suggest that acting as ubiquitous triggers of intercellular messenger release is one of the major functional roles of extracellular nucleotides. While initiation of messenger release by nucleotides has been unraveled in many contexts, it may have been overlooked in others. It can be anticipated that additional nucleotide-driven messenger functions will be uncovered with relevance for both understanding physiology and development of therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50(3):413–492

    PubMed  CAS  Google Scholar 

  2. Burnstock G, Verkhratsky A (2009) Evolutionary origins of the purinergic signalling system. Acta Physiol (Oxf) 195(4):415–447. doi:10.1111/j.1748-1716.2009.01957.x

    Article  CAS  Google Scholar 

  3. Verkhratsky A, Burnstock G (2014) Biology of purinergic signalling: its ancient evolutionary roots, its omnipresence and its multiple functional significance. Bioessays 36(7):697–705. doi:10.1002/bies.201400024

    Article  PubMed  CAS  Google Scholar 

  4. Burnstock G (2013) Introduction to purinergic signalling in the brain. Adv Exp Med Biol 986:1–12. doi:10.1007/978-94-007-4719-7_1

    Article  PubMed  CAS  Google Scholar 

  5. Butt AM (2011) ATP: a ubiquitous gliotransmitter integrating neuron-glial networks. Semin Cell Dev Biol 22(2):205–213. doi:10.1016/j.semcdb.2011.02.023

    Article  PubMed  CAS  Google Scholar 

  6. Zimmermann H (2011) Purinergic signaling in neural development. Semin Cell Dev Biol 22(2):194–204. doi:10.1016/j.semcdb.2011.02.007

    Article  PubMed  CAS  Google Scholar 

  7. Tsuda M, Tozaki-Saitoh H, Inoue K (2010) Pain and purinergic signaling. Brain Res Rev 63(1–2):222–232. doi:10.1016/j.brainresrev.2009.11.003

    Article  PubMed  CAS  Google Scholar 

  8. Burnstock G (2014) Purinergic signalling in endocrine organs. Purinergic Signal 10(1):189–231. doi:10.1007/s11302-013-9396-x

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Nakatsuka T, Gu JG (2006) P2X purinoceptors and sensory transmission. Pflugers Arch 452(5):598–607. doi:10.1007/s00424-006-0057-6

    Article  PubMed  CAS  Google Scholar 

  10. Housley GD, Bringmann A, Reichenbach A (2009) Purinergic signaling in special senses. Trends Neurosci 32(3):128–141. doi:10.1016/j.tins.2009.01.001

    Article  PubMed  CAS  Google Scholar 

  11. Birch RE, Schwiebert EM, Peppiatt-Wildman CM et al (2013) Emerging key roles for P2X receptors in the kidney. Front Physiol 4:262. doi:10.3389/fphys.2013.00262

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Burnstock G (2014) Purinergic signalling in the urinary tract in health and disease. Purinergic Signal 10(1):103–155. doi:10.1007/s11302-013-9395-y

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Vaughn BP, Robson SC, Longhi MS (2014) Purinergic signaling in liver disease. Dig Dis 32(5):516–524. doi:10.1159/000360498

    Article  PubMed  Google Scholar 

  14. Gachet C (2008) P2 receptors, platelet function and pharmacological implications. Thromb Haemost 99(3):466–472. doi:10.1160/TH07-11-0673

    PubMed  CAS  Google Scholar 

  15. Burnstock G (2009) Purinergic regulation of vascular tone and remodelling. Auton Autacoid Pharmacol 29(3):63–72. doi:10.1111/j.1474-8673.2009.00435.x

    Article  PubMed  CAS  Google Scholar 

  16. Burnstock G, Boeynaems J (2014) Purinergic signalling and immune cells. Purinergic Signal 10(4):529–564. doi:10.1007/s11302-014-9427-2

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Idzko M, Ferrari D, Eltzschig HK (2014) Nucleotide signalling during inflammation. Nature 509(7500):310–317. doi:10.1038/nature13085

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Rumney RMH, Wang N, Agrawal A et al (2012) Purinergic signalling in bone. Front Endocrinol 3:116. doi:10.3389/fendo.2012.00116

    Article  Google Scholar 

  19. Burnstock G, Arnett TR, Orriss IR (2013) Purinergic signalling in the musculoskeletal system. Purinergic Signal 9(4):541–572. doi:10.1007/s11302-013-9381-4

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Burnstock G, Brouns I, Adriaensen D et al (2012) Purinergic signaling in the airways. Pharmacol Rev 64(4):834–868. doi:10.1124/pr.111.005389

    Article  PubMed  CAS  Google Scholar 

  21. Goyal RK, Sullivan MP, Chaudhury A (2013) Progress in understanding of inhibitory purinergic neuromuscular transmission in the gut. Neurogastroenterol Motil 25(3):203–207. doi:10.1111/nmo.12090

    Article  PubMed  CAS  Google Scholar 

  22. Novak I (2011) Purinergic signalling in epithelial ion transport: regulation of secretion and absorption. Acta Physiol (Oxf) 202(3):501–522. doi:10.1111/j.1748-1716.2010.02225.x

    Article  CAS  Google Scholar 

  23. Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7(7):575–590. doi:10.1038/nrd2605

    Article  PubMed  CAS  Google Scholar 

  24. Erlinge D, Burnstock G (2008) P2 receptors in cardiovascular regulation and disease. Purinergic Signal 4(1):1–20. doi:10.1007/s11302-007-9078-7

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Di Virgilio F (2012) Purines, purinergic receptors, and cancer. Cancer Res 72(21):5441–5447. doi:10.1158/0008-5472. CAN-12-1600

  26. Jacob F, Pérez Novo C, Bachert C et al (2013) Purinergic signaling in inflammatory cells: P2 receptor expression, functional effects, and modulation of inflammatory responses. Purinergic Signal 9(3):285–306. doi:10.1007/s11302-013-9357-4

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Burnstock G, Pelleg A (2015) Cardiac purinergic signalling in health and disease. Purinergic Signal 11(1):1–46. doi:10.1007/s11302-014-9436-1

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Roberts JA, Vial C, Digby HR et al (2006) Molecular properties of P2X receptors. Pflugers Arch 452(5):486–500. doi:10.1007/s00424-006-0073-6

    Article  PubMed  CAS  Google Scholar 

  29. von Kügelgen I, Harden TK (2011) Molecular pharmacology, physiology, and structure of the P2Y receptors. Adv Pharmacol 61:373–415. doi:10.1016/B978-0-12-385526-8.00012-6

    Article  CAS  Google Scholar 

  30. Erb L, Weisman GA (2012) Coupling of P2Y receptors to G proteins and other signaling pathways. Wiley Interdiscip Rev Membr Transp Signal 1(6):789–803. doi:10.1002/wmts.62

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Jacobson KA, Balasubramanian R, Deflorian F et al (2012) G protein-coupled adenosine (P1) and P2Y receptors: ligand design and receptor interactions. Purinergic Signal 8(3):419–436. doi:10.1007/s11302-012-9294-7

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Jacobson KA, Paoletta S, Katritch V et al (2015) Nucleotides acting at P2Y receptors: connecting structure and function. Mol Pharmacol 88(2):220–230. doi:10.1124/mol.114.095711

    Article  PubMed  CAS  Google Scholar 

  33. Cinkilic O, King BF, van der Giet M et al (2001) Selective agonism of group I P2X receptors by dinucleotides dependent on a single adenine moiety. J Pharmacol Exp Ther 299(1):131–136

    PubMed  CAS  Google Scholar 

  34. Erb L, Liao Z, Seye CI et al (2006) P2 receptors: intracellular signaling. Pflugers Arch 452(5):552–562. doi:10.1007/s00424-006-0069-2

    Article  PubMed  CAS  Google Scholar 

  35. Bartlett R, Stokes L, Sluyter R (2014) The P2X7 receptor channel: recent developments and the use of P2X7 antagonists in models of disease. Pharmacol Rev 66(3):638–675. doi:10.1124/pr.113.008003

    Article  PubMed  CAS  Google Scholar 

  36. Alves LA, de Melo Reis RA, de Souza CAM et al (2014) The P2X7 receptor: shifting from a low- to a high-conductance channel—an enigmatic phenomenon? Biochim Biophys Acta 1838(10):2578–2587. doi:10.1016/j.bbamem.2014.05.015

    Article  PubMed  CAS  Google Scholar 

  37. Browne LE, Compan V, Bragg L et al (2013) P2X7 receptor channels allow direct permeation of nanometer-sized dyes. J Neurosci 33(8):3557–3566. doi:10.1523/JNEUROSCI.2235-12.2013

    Article  PubMed  CAS  Google Scholar 

  38. Costa-Junior HM, Sarmento Vieira F, Coutinho-Silva R (2011) C terminus of the P2X7 receptor: treasure hunting. Purinergic Signal 7(1):7–19. doi:10.1007/s11302-011-9215-1

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Zimmermann H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8(3):437–502. doi:10.1007/s11302-012-9309-4

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Corriden R, Insel PA (2010) Basal release of ATP: an autocrine-paracrine mechanism for cell regulation. Sci Signal 3(104):re1. doi:10.1126/scisignal.3104re1

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Lazarowski ER, Sesma JI, Seminario-Vidal L et al (2011) Molecular mechanisms of purine and pyrimidine nucleotide release. Adv Pharmacol 61:221–261. doi:10.1016/B978-0-12-385526-8.00008-4

    Article  PubMed  CAS  Google Scholar 

  42. Lazarowski ER (2012) Vesicular and conductive mechanisms of nucleotide release. Purinergic Signal 8(3):359–373. doi:10.1007/s11302-012-9304-9

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Cisneros-Mejorado A, Pérez-Samartín A, Gottlieb M et al (2015) ATP signaling in brain: release, excitotoxicity and potential therapeutic targets. Cell Mol Neurobiol 35(1):1–6. doi:10.1007/s10571-014-0092-3

    Article  PubMed  CAS  Google Scholar 

  44. Orellana JA, Stehberg J (2014) Hemichannels: new roles in astroglial function. Front Physiol 5:193. doi:10.3389/fphys.2014.00193

    Article  PubMed Central  PubMed  Google Scholar 

  45. Takano T, He W, Han X et al (2014) Rapid manifestation of reactive astrogliosis in acute hippocampal brain slices. Glia 62(1):78–95. doi:10.1002/glia.22588

    Article  PubMed Central  PubMed  Google Scholar 

  46. Khakh BS, Gittermann D, Cockayne DA et al (2003) ATP modulation of excitatory synapses onto interneurons. J Neurosci 23(19):7426–7437

    PubMed  CAS  Google Scholar 

  47. Cho J, Choi I, Jang I (2010) P2X7 receptors enhance glutamate release in hippocampal hilar neurons. Neuroreport 21(13):865–870. doi:10.1097/WNR.0b013e32833d9142

    Article  PubMed  CAS  Google Scholar 

  48. Khakh BS, Henderson G (1998) ATP receptor-mediated enhancement of fast excitatory neurotransmitter release in the brain. Mol Pharmacol 54(2):372–378

    PubMed  CAS  Google Scholar 

  49. Shigetomi E, Kato F (2004) Action potential-independent release of glutamate by Ca2+ entry through presynaptic P2X receptors elicits postsynaptic firing in the brainstem autonomic network. J Neurosci 24(12):3125–3135. doi:10.1523/JNEUROSCI.0090-04.2004

    Article  PubMed  CAS  Google Scholar 

  50. Gu JG, MacDermott AB (1997) Activation of ATP P2X receptors elicits glutamate release from sensory neuron synapses. Nature 389(6652):749–753. doi:10.1038/39639

    Article  PubMed  CAS  Google Scholar 

  51. León D, Sánchez-Nogueiro J, Marín-García P et al (2008) Glutamate release and synapsin-I phosphorylation induced by P2X7 receptors activation in cerebellar granule neurons. Neurochem Int 52(6):1148–1159. doi:10.1016/j.neuint.2007.12.004

    Article  PubMed  CAS  Google Scholar 

  52. Marcoli M, Cervetto C, Paluzzi P et al (2008) P2X7 pre-synaptic receptors in adult rat cerebrocortical nerve terminals: a role in ATP-induced glutamate release. J Neurochem 105(6):2330–2342. doi:10.1111/j.1471-4159.2008.05322.x

    Article  PubMed  CAS  Google Scholar 

  53. Miras-Portugal MT, Díaz-Hernández M, Giráldez L et al (2003) P2X7 receptors in rat brain: presence in synaptic terminals and granule cells. Neurochem Res 28(10):1597–1605

    Article  PubMed  CAS  Google Scholar 

  54. Jeremic A, Jeftinija K, Stevanovic J et al (2001) ATP stimulates calcium-dependent glutamate release from cultured astrocytes. J Neurochem 77(2):664–675. doi:10.1046/j.1471-4159.2001.00272.x

    Article  PubMed  CAS  Google Scholar 

  55. Zhang Q, Pangrsic T, Kreft M et al (2004) Fusion-related release of glutamate from astrocytes. J Biol Chem 279(13):12724–12733. doi:10.1074/jbc.M312845200

    Article  PubMed  CAS  Google Scholar 

  56. Domercq M, Brambilla L, Pilati E et al (2006) P2Y1 receptor-evoked glutamate exocytosis from astrocytes: control by tumor necrosis factor-alpha and prostaglandins. J Biol Chem 281(41):30684–30696. doi:10.1074/jbc.M606429200

    Article  PubMed  CAS  Google Scholar 

  57. Zeng J, Liu X, Zhang J et al (2008) P2Y1 receptor-mediated glutamate release from cultured dorsal spinal cord astrocytes. J Neurochem 106(5):2106–2118. doi:10.1111/j.1471-4159.2008.05560.x

    Article  PubMed  CAS  Google Scholar 

  58. Duan S, Anderson CM, Keung EC et al (2003) P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci 23(4):1320–1328

    PubMed  CAS  Google Scholar 

  59. Fellin T, Pozzan T, Carmignoto G (2006) Purinergic receptors mediate two distinct glutamate release pathways in hippocampal astrocytes. J Biol Chem 281(7):4274–4284. doi:10.1074/jbc.M510679200

    Article  PubMed  CAS  Google Scholar 

  60. Jeftinija SD, Jeftinija KV (1998) ATP stimulates release of excitatory amino acids from cultured Schwann cells. Neuroscience 82(3):927–934

    Article  PubMed  CAS  Google Scholar 

  61. Stigliani S, Zappettini S, Raiteri L et al (2006) Glia re-sealed particles freshly prepared from adult rat brain are competent for exocytotic release of glutamate. J Neurochem 96(3):656–668. doi:10.1111/j.1471-4159.2005.03631.x

    Article  PubMed  CAS  Google Scholar 

  62. Pan H, Chou Y, Sun SH (2015) P2X7 R-mediated Ca2+-independent D-serine release via pannexin-1 of the P2X7 R-pannexin-1 complex in astrocytes. Glia 63(5):877–893. doi:10.1002/glia.22790

    Article  PubMed  Google Scholar 

  63. Rhee JS, Wang ZM, Nabekura J et al (2000) ATP facilitates spontaneous glycinergic IPSC frequency at dissociated rat dorsal horn interneuron synapses. J Physiol 524(2):471–483. doi:10.1111/j.1469-7793.2000.t01-1-00471.x

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Wang ZM, Katsurabayashi S, Rhee JS et al (2001) Substance P abolishes the facilitatory effect of ATP on spontaneous glycine release in neurons of the trigeminal nucleus pars caudalis. J Neurosci 21(9):2983–2991

    PubMed  CAS  Google Scholar 

  65. Jameson HS, Pinol RA, Mendelowitz D (2008) Purinergic P2X receptors facilitate inhibitory GABAergic and glycinergic neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Brain Res 1224:53–62. doi:10.1016/j.brainres.2008.06.012

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Gómez-Villafuertes R, Gualix J, Miras-Portugal MT (2001) Single GABAergic synaptic terminals from rat midbrain exhibit functional P2X and dinucleotide receptors, able to induce GABA secretion. J Neurochem 77(1):84–93

    Article  PubMed  Google Scholar 

  67. Hugel S, Schlichter R (2000) Presynaptic P2X receptors facilitate inhibitory GABAergic transmission between cultured rat spinal cord dorsal horn neurons. J Neurosci 20(6):2121–2130

    PubMed  CAS  Google Scholar 

  68. Bhattacharya A, Vavra V, Svobodova I et al (2013) Potentiation of inhibitory synaptic transmission by extracellular ATP in rat suprachiasmatic nuclei. J Neurosci 33(18):8035–8044. doi:10.1523/JNEUROSCI.4682-12.2013

    Article  PubMed  CAS  Google Scholar 

  69. Wirkner K, Köfalvi A, Fischer W et al (2005) Supersensitivity of P2X receptors in cerebrocortical cell cultures after in vitro ischemia. J Neurochem 95(5):1421–1437. doi:10.1111/j.1471-4159.2005.03465.x

    Article  PubMed  CAS  Google Scholar 

  70. Sperlágh B, Köfalvi A, Deuchars J et al (2002) Involvement of P2X7 receptors in the regulation of neurotransmitter release in the rat hippocampus. J Neurochem 81(6):1196–1211

    Article  PubMed  Google Scholar 

  71. Vavra V, Bhattacharya A, Zemkova H (2011) Facilitation of glutamate and GABA release by P2X receptor activation in supraoptic neurons from freshly isolated rat brain slices. Neuroscience 188:1–12. doi:10.1016/j.neuroscience.2011.04.067

    Article  PubMed  CAS  Google Scholar 

  72. Wang C, Chang Y, Kuo J et al (2002) Activation of P2X7 receptors induced [3H]GABA release from the RBA-2 type-2 astrocyte cell line through a Cl/HCO3 -dependent mechanism. Glia 37(1):8–18

    Article  PubMed  Google Scholar 

  73. Allgaier C, Pullmann F, Schobert A et al (1994) P2 purinoceptors modulating noradrenaline release from sympathetic neurons in culture. Eur J Pharmacol 252(2):R7–R8

    Article  PubMed  CAS  Google Scholar 

  74. Boehm S (1994) Noradrenaline release from rat sympathetic neurons evoked by P2-purinoceptor activation. Naunyn Schmiedeberg's Arch Pharmacol 350(5):454–458

    Article  CAS  Google Scholar 

  75. von Kügelgen I, Nörenberg W, Meyer A et al (1999) Role of action potentials and calcium influx in ATP- and UDP-induced noradrenaline release from rat cultured sympathetic neurones. Naunyn Schmiedeberg's Arch Pharmacol 359(5):360–369

    Article  Google Scholar 

  76. Sesti C, Broekman MJ, Drosopoulos JHF et al (2002) Ecto-nucleotidase in cardiac sympathetic nerve endings modulates ATP-mediated feedback of norepinephrine release. J Pharmacol Exp Ther 300(2):605–611

    Article  PubMed  CAS  Google Scholar 

  77. Machida T, Heerdt PM, Reid AC et al (2005) Ectonucleoside triphosphate diphosphohydrolase 1/CD39, localized in neurons of human and porcine heart, modulates ATP-induced norepinephrine exocytosis. J Pharmacol Exp Ther 313(2):570–577. doi:10.1124/jpet.104.081240

    Article  PubMed  CAS  Google Scholar 

  78. Queiroz G, Talaia C, Gonçalves J (2003) ATP modulates noradrenaline release by activation of inhibitory P2Y receptors and facilitatory P2X receptors in the rat vas deferens. J Pharmacol Exp Ther 307(2):809–815. doi:10.1124/jpet.103.054809

    Article  PubMed  CAS  Google Scholar 

  79. Sperlágh B, Erdélyi F, Szabó G et al (2000) Local regulation of [3H]-noradrenaline release from the isolated guinea-pig right atrium by P2X-receptors located on axon terminals. Br J Pharmacol 131(8):1775–1783. doi:10.1038/sj.bjp.0703757

    Article  PubMed Central  PubMed  Google Scholar 

  80. Papp L, Balázsa T, Köfalvi A et al (2004) P2X receptor activation elicits transporter-mediated noradrenaline release from rat hippocampal slices. J Pharmacol Exp Ther 310(3):973–980. doi:10.1124/jpet.104.066712

    Article  PubMed  CAS  Google Scholar 

  81. Inoue K, Nakazawa K, Fujimori K et al (1989) Extracellular adenosine 5’-triphosphate-evoked norepinephrine secretion not relating to voltage-gated Ca channels in pheochromocytoma PC12 cells. Neurosci Lett 106(3):294–299

    Article  PubMed  CAS  Google Scholar 

  82. Majid MA, Okajima F, Kondo Y (1992) Characterization of ATP receptor which mediates norepinephrine release in PC12 cells. Biochim Biophys Acta 1136(3):283–289

    Article  PubMed  CAS  Google Scholar 

  83. Rhoads AR, Parui R, Vu ND et al (1993) ATP-induced secretion in PC12 cells and photoaffinity labeling of receptors. J Neurochem 61(5):1657–1666

    Article  PubMed  CAS  Google Scholar 

  84. Oda H, Murayama T, Nomura Y (1995) Effects of protein kinase C and A activation on ATP-stimulated release of [3H]noradrenaline from PC12 cells. J Biochem 118(2):325–331

    PubMed  CAS  Google Scholar 

  85. Nakazawa K, Inoue K (1992) Roles of Ca2+ influx through ATP-activated channels in catecholamine release from pheochromocytoma PC12 cells. J Neurophysiol 68(6):2026–2032

    PubMed  CAS  Google Scholar 

  86. Zhang YX, Yamashita H, Ohshita T et al (1995) ATP increases extracellular dopamine level through stimulation of P2Y purinoceptors in the rat striatum. Brain Res 691(1–2):205–212

    PubMed  CAS  Google Scholar 

  87. Krügel U, Kittner H, Illes P (1999) Adenosine 5’-triphosphate-induced dopamine release in the rat nucleus accumbens in vivo. Neurosci Lett 265(1):49–52

    Article  PubMed  Google Scholar 

  88. Krügel U, Kittner H, Illes P (2001) Mechanisms of adenosine 5’-triphosphate-induced dopamine release in the rat nucleus accumbens in vivo. Synapse 39(3):222–232. doi:10.1002/1098-2396(20010301)39:3<222:AID-SYN1003>3.0.CO;2-R

    Article  PubMed  Google Scholar 

  89. Koizumi S, Ikeda M, Inoue K et al (1995) Enhancement by zinc of ATP-evoked dopamine release from rat pheochromocytoma PC12 cells. Brain Res 673(1):75–82

    Article  PubMed  CAS  Google Scholar 

  90. Kinnamon SC, Finger TE (2013) A taste for ATP: neurotransmission in taste buds. Front Cell Neurosci 7:264. doi:10.3389/fncel.2013.00264

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Huang YA, Dando R, Roper SD (2009) Autocrine and paracrine roles for ATP and serotonin in mouse taste buds. J Neurosci 29(44):13909–13918. doi:10.1523/JNEUROSCI.2351-09.2009

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Guthrie PB, Knappenberger J, Segal M et al (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19(2):520–528

    PubMed  CAS  Google Scholar 

  93. Anderson CM, Bergher JP, Swanson RA (2004) ATP-induced ATP release from astrocytes. J Neurochem 88(1):246–256

    Article  PubMed  CAS  Google Scholar 

  94. Wang Z, Haydon PG, Yeung ES (2000) Direct observation of calcium-independent intercellular ATP signaling in astrocytes. Anal Chem 72(9):2001–2007. doi:10.1021/ac9912146

    Article  PubMed  CAS  Google Scholar 

  95. Fam SR, Gallagher CJ, Salter MW (2000) P2Y1 purinoceptor-mediated Ca2+ signaling and Ca2+ wave propagation in dorsal spinal cord astrocytes. J Neurosci 20(8):2800–2808

    PubMed  CAS  Google Scholar 

  96. John GR, Scemes E, Suadicani SO et al (1999) IL-1beta differentially regulates calcium wave propagation between primary human fetal astrocytes via pathways involving P2 receptors and gap junction channels. Proc Natl Acad Sci U S A 96(20):11613–11618

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  97. Gallagher CJ, Salter MW (2003) Differential properties of astrocyte calcium waves mediated by P2Y1 and P2Y2 receptors. J Neurosci 23(17):6728–6739

    PubMed  CAS  Google Scholar 

  98. Choo AM, Miller WJ, Chen Y et al (2013) Antagonism of purinergic signalling improves recovery from traumatic brain injury. Brain 136(Pt 1):65–80. doi:10.1093/brain/aws286

    Article  PubMed Central  PubMed  Google Scholar 

  99. Kuga N, Sasaki T, Takahara Y et al (2011) Large-scale calcium waves traveling through astrocytic networks in vivo. J Neurosci 31(7):2607–2614. doi:10.1523/JNEUROSCI.5319-10.2011

    Article  PubMed  CAS  Google Scholar 

  100. Lemos JR, Ortiz-Miranda SI, Cuadra AE et al (2012) Modulation/physiology of calcium channel sub-types in neurosecretory terminals. Cell Calcium 51(3–4):284–292. doi:10.1016/j.ceca.2012.01.008

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  101. Troadec JD, Thirion S, Nicaise G et al (1998) ATP-evoked increases in [Ca2+]i and peptide release from rat isolated neurohypophysial terminals via a P2X2 purinoceptor. J Physiol 511(Pt 1):89–103

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  102. Lemos JR, Wang G (2000) Excitatory versus inhibitory modulation by ATP of neurohypophysial terminal activity in the rat. Exp Physiol 85:67S–74S

    Article  PubMed  CAS  Google Scholar 

  103. Knott TK, Marrero HG, Custer EE et al (2008) Endogenous ATP potentiates only vasopressin secretion from neurohypophysial terminals. J Cell Physiol 217(1):155–161. doi:10.1002/jcp.21485

    Article  PubMed  CAS  Google Scholar 

  104. Custer EE, Knott TK, Cuadra AE et al (2012) P2X purinergic receptor knockout mice reveal endogenous ATP modulation of both vasopressin and oxytocin release from the intact neurohypophysis. J Neuroendocrinol 24(4):674–680. doi:10.1111/j.1365-2826.2012.02299.x

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  105. Kapoor JR, Sladek CD (2000) Purinergic and adrenergic agonists synergize in stimulating vasopressin and oxytocin release. J Neurosci 20(23):8868–8875

    PubMed  CAS  Google Scholar 

  106. Song Z, Gomes DA, Stevens W (2009) Role of purinergic P2Y1 receptors in regulation of vasopressin and oxytocin secretion. Am J Physiol Regul Integr Comp Physiol 297(2):R478–R484. doi:10.1152/ajpregu.00163.2009

    Article  PubMed  CAS  Google Scholar 

  107. Song Z, Sladek CD (2006) Site of ATP and phenylephrine synergistic stimulation of vasopressin release from the hypothalamo-neurohypophyseal system. J Neuroendocrinol 18(4):266–272. doi:10.1111/j.1365-2826.2006.01411.x

    Article  PubMed  CAS  Google Scholar 

  108. Gomes DA, Song Z, Stevens W et al (2009) Sustained stimulation of vasopressin and oxytocin release by ATP and phenylephrine requires recruitment of desensitization-resistant P2X purinergic receptors. Am J Physiol Regul Integr Comp Physiol 297(4):R940–R949. doi:10.1152/ajpregu.00358.2009

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  109. Chen ZP, Kratzmeier M, Levy A et al (1995) Evidence for a role of pituitary ATP receptors in the regulation of pituitary function. Proc Natl Acad Sci U S A 92(11):5219–5223

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  110. Tomić M, Jobin RM, Vergara LA et al (1996) Expression of purinergic receptor channels and their role in calcium signaling and hormone release in pituitary gonadotrophs. Integration of P2 channels in plasma membrane- and endoplasmic reticulum-derived calcium oscillations. J Biol Chem 271(35):21200–21208

    Article  PubMed  Google Scholar 

  111. Zemkova H, Balik A, Jiang Y et al (2006) Roles of purinergic P2X receptors as pacemaking channels and modulators of calcium-mobilizing pathway in pituitary gonadotrophs. Mol Endocrinol 20(6):1423–1436. doi:10.1210/me.2005-0508

    Article  PubMed  CAS  Google Scholar 

  112. Barnea A, Cho G, Katz BM (1991) A putative role for extracellular ATP: facilitation of 67copper uptake and of copper stimulation of the release of luteinizing hormone-releasing hormone from median eminence explants. Brain Res 541(1):93–97

    Article  PubMed  CAS  Google Scholar 

  113. Terasawa E, Keen KL, Grendell RL et al (2005) Possible role of 5’-adenosine triphosphate in synchronization of Ca2+ oscillations in primate luteinizing hormone-releasing hormone neurons. Mol Endocrinol 19(11):2736–2747. doi:10.1210/me.2005-0034

    Article  PubMed  CAS  Google Scholar 

  114. Nuñez L, Villalobos C, Frawley LS (1997) Extracellular ATP as an autocrine/paracrine regulator of prolactin release. Am J Physiol 272(6 Pt 1):E1117–E1123

    PubMed  Google Scholar 

  115. He M, Gonzalez-Iglesias AE, Stojilkovic SS (2003) Role of nucleotide P2 receptors in calcium signaling and prolactin release in pituitary lactotrophs. J Biol Chem 278(47):46270–46277. doi:10.1074/jbc.M309005200

    Article  PubMed  CAS  Google Scholar 

  116. Zemkova H, Kucka M, Li S et al (2010) Characterization of purinergic P2X4 receptor channels expressed in anterior pituitary cells. Am J Physiol Endocrinol Metab 298(3):E644–E651. doi:10.1152/ajpendo.00558.2009

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  117. Jia C, Hegg CC (2010) NPY mediates ATP-induced neuroproliferation in adult mouse olfactory epithelium. Neurobiol Dis 38(3):405–413. doi:10.1016/j.nbd.2010.02.013

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  118. Kanekar S, Jia C, Hegg CC (2009) Purinergic receptor activation evokes neurotrophic factor neuropeptide Y release from neonatal mouse olfactory epithelial slices. J Neurosci Res 87(6):1424–1434. doi:10.1002/jnr.21954

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  119. Jia C, Hayoz S, Hutch CR et al (2013) An IP3R3- and NPY-expressing microvillous cell mediates tissue homeostasis and regeneration in the mouse olfactory epithelium. PLoS ONE 8(3), e58668. doi:10.1371/journal.pone.0058668

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  120. Nishi H (1999) Two different P2Y receptors linked to steroidogenesis in bovine adrenocortical cells. Jpn J Pharmacol 81(2):194–199

    Article  PubMed  CAS  Google Scholar 

  121. Hoey DE, Nicol M, Williams BC et al (1994) Primary cultures of bovine inner zone adrenocortical cells secrete cortisol in response to adenosine 5’-triphosphate, adenosine 5’-diphosphate, and uridine 5’-triphosphate via a nucleotide receptor that may be coupled to two signal generation systems. Endocrinology 135(4):1553–1560. doi:10.1210/endo.135.4.7925117

    PubMed  CAS  Google Scholar 

  122. Kawamura M, Matsui T, Niitsu A et al (1991) Extracellular ATP stimulates steroidogenesis in bovine adrenocortical fasciculata cells via P2 purinoceptors. Jpn J Pharmacol 56(4):543–545

    Article  PubMed  CAS  Google Scholar 

  123. Kawamura M, Niitsu A, Nishi H et al (2001) Extracellular ATP potentiates steroidogenic effect of adrenocorticotropic hormone in bovine adrenocortical fasciculata cells. Jpn J Pharmacol 85(4):376–381

    Article  PubMed  CAS  Google Scholar 

  124. Xu L, Enyeart JJ (1999) Purine and pyrimidine nucleotides inhibit a noninactivating K+ current and depolarize adrenal cortical cells through a G protein-coupled receptor. Mol Pharmacol 55(2):364–376

    PubMed  CAS  Google Scholar 

  125. Nishi H, Arai H, Momiyama T (2013) NCI-H295R, a human adrenal cortex-derived cell line, expresses purinergic receptors linked to Ca2+-mobilization/influx and cortisol secretion. PLoS ONE 8(8), e71022. doi:10.1371/journal.pone.0071022

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  126. Foresta C, Rossato M, Nogara A et al (1996) Role of P2-purinergic receptors in rat Leydig cell steroidogenesis. Biochem J 320(Pt 2):499–504

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  127. Rossato M, Merico M, Bettella A et al (2001) Extracellular ATP stimulates estradiol secretion in rat Sertoli cells in vitro: modulation by external sodium. Mol Cell Endocrinol 178(1–2):181–187

    Article  PubMed  CAS  Google Scholar 

  128. Jia C, Cussen AR, Hegg CC (2011) ATP differentially upregulates fibroblast growth factor 2 and transforming growth factor α in neonatal and adult mice: effect on neuroproliferation. Neuroscience 177:335–346. doi:10.1016/j.neuroscience.2010.12.039

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  129. Jin H, Eun SY, Lee JS et al (2014) P2Y2 receptor activation by nucleotides released from highly metastatic breast cancer cells increases tumor growth and invasion via crosstalk with endothelial cells. Breast Cancer Res 16(5):R77. doi:10.1186/bcr3694

    Article  PubMed Central  PubMed  Google Scholar 

  130. Klein K, Aeschlimann A, Jordan S et al (2012) ATP induced brain-derived neurotrophic factor expression and release from osteoarthritis synovial fibroblasts is mediated by purinergic receptor P2X4. PLoS ONE 7(5), e36693. doi:10.1371/journal.pone.0036693

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  131. Beggs S, Trang T, Salter MW (2012) P2X4R+ microglia drive neuropathic pain. Nat Neurosci 15(8):1068–1073. doi:10.1038/nn.3155

    Article  PubMed  CAS  Google Scholar 

  132. Trang T, Beggs S, Salter MW (2011) Brain-derived neurotrophic factor from microglia: a molecular substrate for neuropathic pain. Neuron Glia Biol 7(1):99–108. doi:10.1017/S1740925X12000087

    Article  PubMed Central  PubMed  Google Scholar 

  133. Trang T, Beggs S, Wan X et al (2009) P2X4-receptor-mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation. J Neurosci 29(11):3518–3528. doi:10.1523/JNEUROSCI.5714-08.2009

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  134. Ulmann L, Hatcher JP, Hughes JP et al (2008) Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J Neurosci 28(44):11263–11268. doi:10.1523/JNEUROSCI.2308-08.2008

    Article  PubMed  CAS  Google Scholar 

  135. Verderio C, Bianco F, Blanchard MP et al (2006) Cross talk between vestibular neurons and Schwann cells mediates BDNF release and neuronal regeneration. Brain Cell Biol 35(2–3):187–201. doi:10.1007/s11068-007-9011-6

    PubMed  CAS  Google Scholar 

  136. Lopez-Castejon G, Theaker J, Pelegrin P et al (2010) P2X7 receptor-mediated release of cathepsins from macrophages is a cytokine-independent mechanism potentially involved in joint diseases. J Immunol 185(4):2611–2619. doi:10.4049/jimmunol.1000436

    Article  PubMed  CAS  Google Scholar 

  137. Clark AK, Wodarski R, Guida F et al (2010) Cathepsin S release from primary cultured microglia is regulated by the P2X7 receptor. Glia 58(14):1710–1726. doi:10.1002/glia.21042

    Article  PubMed  Google Scholar 

  138. Murphy N, Lynch MA (2012) Activation of the P2X7 receptor induces migration of glial cells by inducing cathepsin B degradation of tissue inhibitor of metalloproteinase 1. J Neurochem 123(5):761–770. doi:10.1111/jnc.12031

    Article  PubMed  CAS  Google Scholar 

  139. Idzko M, Panther E, Bremer HC et al (2003) Stimulation of P2 purinergic receptors induces the release of eosinophil cationic protein and interleukin-8 from human eosinophils. Br J Pharmacol 138(7):1244–1250. doi:10.1038/sj.bjp.0705145

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  140. Joo YN, Jin H, Eun SY et al (2014) P2Y2R activation by nucleotides released from the highly metastatic breast cancer cell MDA-MB-231 contributes to pre-metastatic niche formation by mediating lysyl oxidase secretion, collagen crosslinking, and monocyte recruitment. Oncotarget 5(19):9322–9334

    Article  PubMed Central  PubMed  Google Scholar 

  141. Khine AA, Del Sorbo L, Vaschetto R et al (2006) Human neutrophil peptides induce interleukin-8 production through the P2Y6 signaling pathway. Blood 107(7):2936–2942. doi:10.1182/blood-2005-06-2314

    Article  PubMed  CAS  Google Scholar 

  142. Warny M, Aboudola S, Robson SC et al (2001) P2Y6 nucleotide receptor mediates monocyte interleukin-8 production in response to UDP or lipopolysaccharide. J Biol Chem 276(28):26051–26056. doi:10.1074/jbc.M102568200

    Article  PubMed  CAS  Google Scholar 

  143. Grbic DM, Degagné É, Larrivée J et al (2012) P2Y6 receptor contributes to neutrophil recruitment to inflamed intestinal mucosa by increasing CXC chemokine ligand 8 expression in an AP-1-dependent manner in epithelial cells. Inflamm Bowel Dis 18(8):1456–1469. doi:10.1002/ibd.21931

    Article  PubMed  Google Scholar 

  144. Grbic DM, Degagne E, Langlois C et al (2008) Intestinal inflammation increases the expression of the P2Y6 receptor on epithelial cells and the release of CXC chemokine ligand 8 by UDP. J Immunol 180(4):2659–2668. doi:10.4049/jimmunol.180.4.2659

    Article  PubMed  CAS  Google Scholar 

  145. Relvas LJM, Bouffioux C, Marcet B et al (2009) Extracellular nucleotides and interleukin-8 production by ARPE cells: potential role of danger signals in blood-retinal barrier activation. Invest Ophthalmol Vis Sci 50(3):1241–1246. doi:10.1167/iovs.08-1902

    Article  PubMed  Google Scholar 

  146. Braganhol E, Kukulski F, Lévesque SA et al (2015) Nucleotide receptors control IL-8/CXCL8 and MCP-1/CCL2 secretions as well as proliferation in human glioma cells. Biochim Biophys Acta 1852(1):120–130. doi:10.1016/j.bbadis.2014.10.014

    Article  PubMed  CAS  Google Scholar 

  147. Trubiani O, Horenstein AL, Caciagli F et al (2014) Expression of P2X7 ATP receptor mediating the IL8 and CCL20 release in human periodontal ligament stem cells. J Cell Biochem 115(6):1138–1146. doi:10.1002/jcb.24756

    Article  PubMed  CAS  Google Scholar 

  148. Kukulski F, Bahrami F, Ben Yebdri F et al (2011) NTPDase1 controls IL-8 production by human neutrophils. J Immunol 187(2):644–653. doi:10.4049/jimmunol.1002680

    Article  PubMed  CAS  Google Scholar 

  149. Kruse R, Säve S, Persson K (2012) Adenosine triphosphate induced P2Y2 receptor activation induces proinflammatory cytokine release in uroepithelial cells. J Urol 188(6):2419–2425. doi:10.1016/j.juro.2012.07.095

    Article  PubMed  CAS  Google Scholar 

  150. Müller T, Bayer H, Myrtek D et al (2005) The P2Y14 receptor of airway epithelial cells: coupling to intracellular Ca2+ and IL-8 secretion. Am J Respir Cell Mol Biol 33(6):601–609. doi:10.1165/rcmb.2005-0181OC

    Article  PubMed  Google Scholar 

  151. Shieh C, Heinrich A, Serchov T et al (2014) P2X7-dependent, but differentially regulated release of IL-6, CCL2, and TNF-α in cultured mouse microglia. Glia 62(4):592–607. doi:10.1002/glia.22628

    Article  PubMed  Google Scholar 

  152. Shiratori M, Tozaki-Saitoh H, Yoshitake M et al (2010) P2X7 receptor activation induces CXCL2 production in microglia through NFAT and PKC/MAPK pathways. J Neurochem 114(3):810–819. doi:10.1111/j.1471-4159.2010.06809.x

    Article  PubMed  CAS  Google Scholar 

  153. Kataoka A, Tozaki-Saitoh H, Koga Y et al (2009) Activation of P2X7 receptors induces CCL3 production in microglial cells through transcription factor NFAT. J Neurochem 108(1):115–125. doi:10.1111/j.1471-4159.2008.05744.x

    Article  PubMed  CAS  Google Scholar 

  154. Solini A, Chiozzi P, Morelli A et al (1999) Human primary fibroblasts in vitro express a purinergic P2X7 receptor coupled to ion fluxes, microvesicle formation and IL-6 release. J Cell Sci 112(Pt 3):297–305

    PubMed  CAS  Google Scholar 

  155. Solle M, Labasi J, Perregaux DG et al (2001) Altered cytokine production in mice lacking P2X7 receptors. J Biol Chem 276(1):125–132. doi:10.1074/jbc.M006781200

    Article  PubMed  CAS  Google Scholar 

  156. Shigemoto-Mogami Y, Koizumi S, Tsuda M et al (2001) Mechanisms underlying extracellular ATP-evoked interleukin-6 release in mouse microglial cell line, MG-5. J Neurochem 78(6):1339–1349. doi:10.1046/j.1471-4159.2001.00514.x

    Article  PubMed  CAS  Google Scholar 

  157. Bergamin LS, Braganhol E, Figueiró F et al (2015) Involvement of purinergic system in the release of cytokines by macrophages exposed to glioma-conditioned medium. J Cell Biochem 116(5):721–729. doi:10.1002/jcb.25018

    Article  PubMed  CAS  Google Scholar 

  158. Xu H, Wu B, Jiang F et al (2013) High fatty acids modulate P2X7 expression and IL-6 release via the p38 MAPK pathway in PC12 cells. Brain Res Bull 94:63–70. doi:10.1016/j.brainresbull.2013.02.002

    Article  PubMed  CAS  Google Scholar 

  159. Inoue K, Hosoi J, Denda M (2007) Extracellular ATP has stimulatory effects on the expression and release of IL-6 via purinergic receptors in normal human epidermal keratinocytes. J Invest Dermatol 127(2):362–371. doi:10.1038/sj.jid.5700526

    Article  PubMed  CAS  Google Scholar 

  160. Yoshida H, Kobayashi D, Ohkubo S et al (2006) ATP stimulates interleukin-6 production via P2Y receptors in human HaCaT keratinocytes. Eur J Pharmacol 540(1–3):1–9. doi:10.1016/j.ejphar.2006.04.008

    Article  PubMed  CAS  Google Scholar 

  161. Fujita T, Tozaki-Saitoh H, Inoue K (2009) P2Y1 receptor signaling enhances neuroprotection by astrocytes against oxidative stress via IL-6 release in hippocampal cultures. Glia 57(3):244–257. doi:10.1002/glia.20749

    Article  PubMed  Google Scholar 

  162. Uratsuji H, Tada Y, Kawashima T et al (2012) P2Y6 receptor signaling pathway mediates inflammatory responses induced by monosodium urate crystals. J Immunol 188(1):436–444. doi:10.4049/jimmunol.1003746

    Article  PubMed  CAS  Google Scholar 

  163. Sakaki H, Fujiwaki T, Tsukimoto M et al (2013) P2X4 receptor regulates P2X7 receptor-dependent IL-1β and IL-18 release in mouse bone marrow-derived dendritic cells. Biochem Biophys Res Commun 432(3):406–411. doi:10.1016/j.bbrc.2013.01.135

    Article  PubMed  CAS  Google Scholar 

  164. Nagakura C, Negishi Y, Tsukimoto M et al (2014) Involvement of P2Y11 receptor in silica nanoparticles 30-induced IL-6 production by human keratinocytes. Toxicology 322:61–68. doi:10.1016/j.tox.2014.03.010

    Article  PubMed  CAS  Google Scholar 

  165. Ishimaru M, Yusuke N, Tsukimoto M et al (2014) Purinergic signaling via P2Y receptors up-mediates IL-6 production by liver macrophages/Kupffer cells. J Toxicol Sci 39(3):413–423

    Article  PubMed  CAS  Google Scholar 

  166. Marriott I, Inscho EW, Bost KL (1999) Extracellular uridine nucleotides initiate cytokine production by murine dendritic cells. Cell Immunol 195(2):147–156. doi:10.1006/cimm.1999.1531

    Article  PubMed  CAS  Google Scholar 

  167. Seo DR, Kim SY, Kim KY et al (2008) Cross talk between P2 purinergic receptors modulates extracellular ATP-mediated interleukin-10 production in rat microglial cells. Exp Mol Med 40(1):19–26. doi:10.3858/emm.2008.40.1.19

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  168. Seo DR, Kim KY, Lee YB (2004) Interleukin-10 expression in lipopolysaccharide-activated microglia is mediated by extracellular ATP in an autocrine fashion. Neuroreport 15(7):1157–1161

    Article  PubMed  CAS  Google Scholar 

  169. Ishibashi T, Dakin KA, Stevens B et al (2006) Astrocytes promote myelination in response to electrical impulses. Neuron 49(6):823–832. doi:10.1016/j.neuron.2006.02.006

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  170. Cohen JE, Fields RD (2009) Activity-dependent neuron–glial signaling by ATP and leukemia-inhibitory factor promotes hippocampal glial cell development. Neuron Glia Biol 4:43–55. doi:10.1017/S1740925X09000076

    Article  Google Scholar 

  171. Tonetti M, Sturla L, Giovine M et al (1995) Extracellular ATP enhances mRNA levels of nitric oxide synthase and TNF-alpha in lipopolysaccharide-treated RAW 264.7 murine macrophages. Biochem Biophys Res Commun 214(1):125–130

    Article  PubMed  CAS  Google Scholar 

  172. Xia M, Zhu Y (2013) FOXO3a involvement in the release of TNF-α stimulated by ATP in spinal cord astrocytes. J Mol Neurosci 51(3):792–804. doi:10.1007/s12031-013-0067-8

    Article  PubMed  CAS  Google Scholar 

  173. Suzuki T (2004) Production and release of neuroprotective tumor necrosis factor by P2X7 receptor-activated microglia. J Neurosci 24(1):1–7. doi:10.1523/JNEUROSCI.3792-03.2004

    Article  PubMed  CAS  Google Scholar 

  174. Hide I, Tanaka M, Inoue A et al (2000) Extracellular ATP triggers tumor necrosis factor-α release from rat microglia. J Neurochem 75(3):965–972. doi:10.1046/j.1471-4159.2000.0750965.x

    Article  PubMed  CAS  Google Scholar 

  175. Ikeda M, Tsuno S, Sugiyama T et al (2013) Ca2+ spiking activity caused by the activation of store-operated Ca2+ channels mediates TNF-α release from microglial cells under chronic purinergic stimulation. Biochim Biophys Acta 1833(12):2573–2585. doi:10.1016/j.bbamcr.2013.06.022

    Article  PubMed  CAS  Google Scholar 

  176. Pupovac A, Foster CM, Sluyter R (2013) Human P2X7 receptor activation induces the rapid shedding of CXCL16. Biochem Biophys Res Commun 432(4):626–631. doi:10.1016/j.bbrc.2013.01.134

    Article  PubMed  CAS  Google Scholar 

  177. Sengstake S (2006) CD21 and CD62L shedding are both inducible via P2X7Rs. Int Immunol 18(7):1171–1178. doi:10.1093/intimm/dxl051

    Article  PubMed  CAS  Google Scholar 

  178. Elliott JI, Surprenant A, Marelli-Berg FM et al (2005) Membrane phosphatidylserine distribution as a non-apoptotic signalling mechanism in lymphocytes. Nat Cell Biol 7(8):808–816. doi:10.1038/ncb1279

    Article  PubMed  CAS  Google Scholar 

  179. Gu B, Bendall LJ, Wiley JS (1998) Adenosine triphosphate-induced shedding of CD23 and L-selectin (CD62L) from lymphocytes is mediated by the same receptor but different metalloproteases. Blood 92(3):946–951

    PubMed  CAS  Google Scholar 

  180. Jamieson GP, Snook MB, Thurlow PJ et al (1996) Extracellular ATP causes of loss of L-selectin from human lymphocytes via occupancy of P2Z purinocepters. J Cell Physiol 166(3):637–642. doi:10.1002/(SICI)1097-4652(199603)166:3<637:AID-JCP19>3.0.CO;2-3

    Article  PubMed  CAS  Google Scholar 

  181. Schleiffenbaum B, Spertini O, Tedder TF (1992) Soluble L-selectin is present in human plasma at high levels and retains functional activity. J Cell Biol 119(1):229–238

    Article  PubMed  CAS  Google Scholar 

  182. Sluyter R, Wiley JS (2002) Extracellular adenosine 5’-triphosphate induces a loss of CD23 from human dendritic cells via activation of P2X7 receptors. Int Immunol 14(12):1415–1421

    Article  PubMed  CAS  Google Scholar 

  183. Pupovac A, Geraghty NJ, Watson D et al (2015) Activation of the P2X7 receptor induces the rapid shedding of CD23 from human and murine B cells. Immunol Cell Biol 93(1):77–85. doi:10.1038/icb.2014.69

    Article  PubMed  CAS  Google Scholar 

  184. Gu BJ (2006) Rapid ATP-induced release of matrix metalloproteinase 9 is mediated by the P2X7 receptor. Blood 107(12):4946–4953. doi:10.1182/blood-2005-07-2994

    Article  PubMed  CAS  Google Scholar 

  185. Camden JM, Schrader AM, Camden RE et al (2005) P2Y2 nucleotide receptors enhance secretase-dependent amyloid precursor protein processing. J Biol Chem 280(19):18696–18702. doi:10.1074/jbc.M500219200

    Article  PubMed  CAS  Google Scholar 

  186. Suzuki A, Kotoyori J, Oiso Y et al (1993) Prostaglandin E2 is a potential mediator of extracellular ATP action in osteoblast-like cells. Cell Adhes Commun 1(2):113–118

    Article  PubMed  CAS  Google Scholar 

  187. Lazarowski ER, Boucher RC, Harden TK (1994) Calcium-dependent release of arachidonic acid in response to purinergic receptor activation in airway epithelium. Am J Physiol 266(2 Pt 1):C406–C415

    PubMed  CAS  Google Scholar 

  188. Chen WC, Chen CC (1998) ATP-induced arachidonic acid release in cultured astrocytes is mediated by Gi protein coupled P2Y1 and P2Y2 receptors. Glia 22(4):360–370

    Article  PubMed  CAS  Google Scholar 

  189. Strokin M, Sergeeva M, Reiser G (2003) Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+. Br J Pharmacol 139(5):1014–1022. doi:10.1038/sj.bjp.0705326

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  190. Cheng S, Lee I, Lin C et al (2013) ATP mediates NADPH oxidase/ROS generation and COX-2/PGE2 expression in A549 cells: role of P2 receptor-dependent STAT3 activation. PLoS ONE 8(1), e54125. doi:10.1371/journal.pone.0054125

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  191. Lin C, Lin W, Cheng S et al (2012) Transactivation of EGFR/PI3K/Akt involved in ATP-induced inflammatory protein expression and cell motility. J Cell Physiol 227(4):1628–1638. doi:10.1002/jcp.22880

    Article  PubMed  CAS  Google Scholar 

  192. Berenbaum F, Humbert L, Bereziat G et al (2003) Concomitant recruitment of ERK1/2 and p38 MAPK signalling pathway is required for activation of cytoplasmic phospholipase A2 via ATP in articular chondrocytes. J Biol Chem 278(16):13680–13687. doi:10.1074/jbc.M211570200

    Article  PubMed  CAS  Google Scholar 

  193. Xia M, Zhu Y (2011) Signaling pathways of ATP-induced PGE2 release in spinal cord astrocytes are EGFR transactivation-dependent. Glia 59(4):664–674. doi:10.1002/glia.21138

    Article  PubMed  Google Scholar 

  194. Ruan YC, Wang Z, Du JY et al (2008) Regulation of smooth muscle contractility by the epithelium in rat vas deferens: role of ATP-induced release of PGE 2. J Physiol 586(20):4843–4857. doi:10.1113/jphysiol.2008.154096

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  195. Hammer LW, Overstreet CR, Choi J et al (2003) ATP stimulates the release of prostacyclin from perfused veins isolated from the hamster hindlimb. Am J Physiol Regul Integr Comp Physiol 285(1):R193–R199. doi:10.1152/ajpregu.00468.2002

    Article  PubMed  CAS  Google Scholar 

  196. Lustig KD, Erb L, Landis DM et al (1992) Mechanisms by which extracellular ATP and UTP stimulate the release of prostacyclin from bovine pulmonary artery endothelial cells. Biochim Biophys Acta 1134(1):61–72

    Article  PubMed  CAS  Google Scholar 

  197. Forsberg EJ, Feuerstein G, Shohami E et al (1987) Adenosine triphosphate stimulates inositol phospholipid metabolism and prostacyclin formation in adrenal medullary endothelial cells by means of P2-purinergic receptors. Proc Natl Acad Sci U S A 84(16):5630–5634

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  198. Carter TD, Hallam TJ, Cusack NJ et al (1988) Regulation of P2Y-purinoceptor-mediated prostacyclin release from human endothelial cells by cytoplasmic calcium concentration. Br J Pharmacol 95(4):1181–1190

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  199. Armstrong PCJ, Leadbeater PD, Chan MV et al (2011) In the presence of strong P2Y12 receptor blockade, aspirin provides little additional inhibition of platelet aggregation. J Thromb Haemost 9(3):552–561. doi:10.1111/j.1538-7836.2010.04160.x

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  200. Kahner BN, Shankar H, Murugappan S et al (2006) Nucleotide receptor signaling in platelets. J Thromb Haemost 4(11):2317–2326. doi:10.1111/j.1538-7836.2006.02192.x

    Article  PubMed  CAS  Google Scholar 

  201. Pearce B, Murphy S, Jeremy J et al (1989) ATP-evoked Ca2+ mobilisation and prostanoid release from astrocytes: P2-purinergic receptors linked to phosphoinositide hydrolysis. J Neurochem 52(3):971–977

    Article  PubMed  CAS  Google Scholar 

  202. Barberà-Cremades M, Baroja-Mazo A, Gomez AI et al (2012) P2X7 receptor-stimulation causes fever via PGE2 and IL-1β release. FASEB J 26(7):2951–2962. doi:10.1096/fj.12-205765

    Article  PubMed  CAS  Google Scholar 

  203. Kobayashi N, Nishi T, Hirata T et al (2006) Sphingosine 1-phosphate is released from the cytosol of rat platelets in a carrier-mediated manner. J Lipid Res 47(3):614–621. doi:10.1194/jlr.M500468-JLR200

    Article  PubMed  CAS  Google Scholar 

  204. Cossenza M, Socodato R, Portugal CC et al (2014) Nitric oxide in the nervous system: biochemical, developmental, and neurobiological aspects. Vitam Horm 96:79–125. doi:10.1016/B978-0-12-800254-4.00005-2

    Article  PubMed  CAS  Google Scholar 

  205. Codocedo JF, Godoy JA, Poblete MI et al (2013) ATP induces NO production in hippocampal neurons by P2X7 receptor activation independent of glutamate signaling. PLoS ONE 8(3), e57626. doi:10.1371/journal.pone.0057626

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  206. Lowe M, Park SJ, Nurse CA et al (2013) Purinergic stimulation of carotid body efferent glossopharyngeal neurones increases intracellular Ca2+ and nitric oxide production. Exp Physiol 98(7):1199–1212. doi:10.1113/expphysiol.2013.072058

    Article  PubMed  CAS  Google Scholar 

  207. Yukawa H, Shen J, Harada N et al (2005) Acute effects of glucocorticoids on ATP-induced Ca2+ mobilization and nitric oxide production in cochlear spiral ganglion neurons. Neuroscience 130(2):485–496. doi:10.1016/j.neuroscience.2004.09.037

    Article  PubMed  CAS  Google Scholar 

  208. Busnardo C, Ferreira-Junior NC, Cruz JC et al (2013) Cardiovascular responses to ATP microinjected into the paraventricular nucleus are mediated by nitric oxide and NMDA glutamate receptors in awake rats. Exp Physiol 98(10):1411–1421. doi:10.1113/expphysiol.2013.073619

    Article  PubMed  CAS  Google Scholar 

  209. Hung Y, Leung Y, Lin N et al (2015) P2 purinergic receptor activation of neuronal nitric oxide synthase and guanylyl cyclase in the dorsal facial area of the medulla increases blood flow in the common carotid arteries of cats. Neuroscience 286:231–241. doi:10.1016/j.neuroscience.2014.11.043

    Article  PubMed  CAS  Google Scholar 

  210. Murakami K, Nakamura Y, Yoneda Y (2003) Potentiation by ATP of lipopolysaccharide-stimulated nitric oxide production in cultured astrocytes. Neuroscience 117(1):37–42. doi:10.1016/S0306-4522(02)00804-7

    Article  PubMed  CAS  Google Scholar 

  211. Li N, Sul J, Haydon PG (2003) A calcium-induced calcium influx factor, nitric oxide, modulates the refilling of calcium stores in astrocytes. J Neurosci 23(32):10302–10310

    PubMed  CAS  Google Scholar 

  212. Mehta B, Begum G, Joshi NB et al (2008) Nitric oxide-mediated modulation of synaptic activity by astrocytic P2Y receptors. J Gen Physiol 132(3):339–349. doi:10.1085/jgp.200810043

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  213. Ohtani Y, Minami M, Satoh M (2000) Expression of inducible nitric oxide synthase mRNA and production of nitric oxide are induced by adenosine triphosphate in cultured rat microglia. Neurosci Lett 293(1):72–74. doi:10.1016/S0304-3940(00)01478-6

    Article  PubMed  CAS  Google Scholar 

  214. Dibaj P, Nadrigny F, Steffens H et al (2010) NO mediates microglial response to acute spinal cord injury under ATP control in vivo. Glia 58(9):1133–1144. doi:10.1002/glia.20993

    Article  PubMed  Google Scholar 

  215. Harada N (2010) Role of nitric oxide on purinergic signalling in the cochlea. Purinergic Signal 6(2):211–220. doi:10.1007/s11302-010-9186-7

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  216. Burnstock G (2002) Purinergic signaling and vascular cell proliferation and death. Arterioscler Thromb Vasc Biol 22(3):364–373. doi:10.1161/hq0302.105360

    Article  PubMed  CAS  Google Scholar 

  217. Pfeiffer ZA, Guerra AN, Hill LM et al (2007) Nucleotide receptor signaling in murine macrophages is linked to reactive oxygen species generation. Free Radic Biol Med 42(10):1506–1516. doi:10.1016/j.freeradbiomed.2007.02.010

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  218. Zhu S, Wang Y, Wang X et al (2014) Emodin inhibits ATP-induced IL-1β secretion, ROS production and phagocytosis attenuation in rat peritoneal macrophages via antagonizing P2X7 receptor. Pharm Biol 52(1):51–57. doi:10.3109/13880209.2013.810648

    Article  PubMed  CAS  Google Scholar 

  219. Cruz CM, Rinna A, Forman HJ et al (2007) ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem 282(5):2871–2879. doi:10.1074/jbc.M608083200

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  220. Díaz-Vegas A, Campos CA, Contreras-Ferrat A et al (2015) ROS production via P2Y1-PKC-NOX2 is triggered by extracellular ATP after electrical stimulation of skeletal muscle cells. PLoS ONE 10(6), e0129882. doi:10.1371/journal.pone.0129882

    Article  PubMed Central  PubMed  Google Scholar 

  221. Abbracchio MP, Burnstock G, Verkhratsky A et al (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32(1):19–29. doi:10.1016/j.tins.2008.10.001

    Article  PubMed  CAS  Google Scholar 

  222. Khakh BS, North RA (2012) Neuromodulation by extracellular ATP and P2X receptors in the CNS. Neuron 76(1):51–69. doi:10.1016/j.neuron.2012.09.024

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  223. Papp L, Vizi ES, Sperlágh B (2004) Lack of ATP-evoked GABA and glutamate release in the hippocampus of P2X7 receptor−/− mice. Neuroreport 15(15):2387–2391

    Article  PubMed  CAS  Google Scholar 

  224. Mongin AA, Kimelberg HK (2002) ATP potently modulates anion channel-mediated excitatory amino acid release from cultured astrocytes. Am J Physiol Cell Physiol 283(2):C569–C578. doi:10.1152/ajpcell.00438.2001

    Article  PubMed  CAS  Google Scholar 

  225. Kimelberg HK (2004) Increased release of excitatory amino acids by the actions of ATP and peroxynitrite on volume-regulated anion channels (VRACs) in astrocytes. Neurochem Int 45(4):511–519. doi:10.1016/j.neuint.2003.11.002

    Article  PubMed  CAS  Google Scholar 

  226. Rudkouskaya A, Chernoguz A, Haskew-Layton RE et al (2008) Two conventional protein kinase C isoforms, alpha and beta I, are involved in the ATP-induced activation of volume-regulated anion channel and glutamate release in cultured astrocytes. J Neurochem 105(6):2260–2270. doi:10.1111/j.1471-4159.2008.05312.x

    Article  PubMed  CAS  Google Scholar 

  227. Haydon PG (2001) GLIA: listening and talking to the synapse. Nat Rev Neurosci 2(3):185–193. doi:10.1038/35058528

    Article  PubMed  CAS  Google Scholar 

  228. Newman EA (2003) New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci 26(10):536–542. doi:10.1016/S0166-2236(03)00237-6

    Article  PubMed  CAS  Google Scholar 

  229. Rodrigues RJ, Tomé AR, Cunha RA (2015) ATP as a multi-target danger signal in the brain. Front Neurosci 9:148. doi:10.3389/fnins.2015.00148

    Article  PubMed Central  PubMed  Google Scholar 

  230. Calabrese F, Rossetti AC, Racagni G et al (2014) Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity. Front Cell Neurosci 8:430. doi:10.3389/fncel.2014.00430

    Article  PubMed Central  PubMed  Google Scholar 

  231. Leal G, Afonso PM, Salazar IL et al (2015) Regulation of hippocampal synaptic plasticity by BDNF. Brain Res 1621:82–101. doi:10.1016/j.brainres.2014.10.019

    Article  PubMed  CAS  Google Scholar 

  232. Vasiljeva O, Reinheckel T, Peters C et al (2007) Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr Pharm Des 13(4):387–403

    Article  PubMed  CAS  Google Scholar 

  233. Wagner JG, Roth RA (2000) Neutrophil migration mechanisms, with an emphasis on the pulmonary vasculature. Pharmacol Rev 52(3):349–374

    PubMed  CAS  Google Scholar 

  234. Mahalingam S, Karupiah G (1999) Chemokines and chemokine receptors in infectious diseases. Immunol Cell Biol 77(6):469–475. doi:10.1046/j.1440-1711.1999.00858.x

    Article  PubMed  CAS  Google Scholar 

  235. Akdis M, Burgler S, Crameri R et al (2011) Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases. J Allergy Clin Immunol 127(3):701–721. doi:10.1016/j.jaci.2010.11.050, e1-70

    Article  PubMed  CAS  Google Scholar 

  236. Gabel CA (2007) P2 purinergic receptor modulation of cytokine production. Purinergic Signal 3(1–2):27–38. doi:10.1007/s11302-006-9034-y

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  237. Izquierdo MC, Martin-Cleary C, Fernandez-Fernandez B et al (2014) CXCL16 in kidney and cardiovascular injury. Cytokine Growth Factor Rev 25(3):317–325. doi:10.1016/j.cytogfr.2014.04.002

    Article  PubMed  CAS  Google Scholar 

  238. Cooper AM, Hobson PS, Jutton MR et al (2012) Soluble CD23 controls IgE synthesis and homeostasis in human B cells. J Immunol 188(7):3199–3207. doi:10.4049/jimmunol.1102689

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  239. Frémeaux-Bacchi V, Aubry JP, Bonnefoy JY et al (1998) Soluble CD21 induces activation and differentiation of human monocytes through binding to membrane CD23. Eur J Immunol 28(12):4268–4274. doi:10.1002/(SICI)1521-4141(199812)28:12<4268:AID-IMMU4268>3.0.CO;2-9

    Article  PubMed  Google Scholar 

  240. Lazarov O, Demars MP (2012) All in the family: how the APPs regulate neurogenesis. Front Neurosci 6:81. doi:10.3389/fnins.2012.00081

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  241. Sakata D, Yao C, Narumiya S (2010) Prostaglandin E2, an immunoactivator. J Pharmacol Sci 112(1):1–5. doi:10.1254/jphs.09R03CP

    Article  PubMed  CAS  Google Scholar 

  242. Pyne NJ, Long JS, Lee SC et al (2009) New aspects of sphingosine 1-phosphate signaling in mammalian cells. Adv Enzyme Regul 49(1):214–221. doi:10.1016/j.advenzreg.2009.01.011

    Article  PubMed  CAS  Google Scholar 

  243. Florenzano F, Viscomi MT, Amadio S et al (2008) Do ATP and NO interact in the CNS? Prog Neurobiol 84(1):40–56. doi:10.1016/j.pneurobio.2007.10.004

    Article  PubMed  CAS  Google Scholar 

  244. Culotta E, Koshland DE (1992) NO news is good news. Science 258(5090):1862–1865

    Article  PubMed  CAS  Google Scholar 

  245. Gundersen V, Storm-Mathisen J, Bergersen LH (2015) Neuroglial transmission. Physiol Rev 95(3):695–726. doi:10.1152/physrev.00024.2014

    Article  PubMed  CAS  Google Scholar 

  246. D’Autréaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8(10):813–824. doi:10.1038/nrm2256

    Article  PubMed  CAS  Google Scholar 

  247. Li W, Qiu Y, Zhang H et al (2015) P2Y2 receptor and EGFR cooperate to promote prostate cancer cell invasion via ERK1/2 pathway. PLoS ONE 10(7), e0133165. doi:10.1371/journal.pone.0133165

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  248. Liu J, Liao Z, Camden J et al (2004) Src homology 3 binding sites in the P2Y2 nucleotide receptor interact with Src and regulate activities of Src, proline-rich tyrosine kinase 2, and growth factor receptors. J Biol Chem 279(9):8212–8218. doi:10.1074/jbc.M312230200

    Article  PubMed  CAS  Google Scholar 

  249. Ratchford AM, Baker OJ, Camden JM et al (2010) P2Y2 nucleotide receptors mediate metalloprotease-dependent phosphorylation of epidermal growth factor receptor and ErbB3 in human salivary gland cells. J Biol Chem 285(10):7545–7555. doi:10.1074/jbc.M109.078170

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  250. Luke TM, Hexum TD (2008) UTP and ATP increase extracellular signal-regulated kinase 1/2 phosphorylation in bovine chromaffin cells through epidermal growth factor receptor transactivation. Purinergic Signal 4(4):323–330. doi:10.1007/s11302-008-9098-y

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  251. Sham D, Wesley UV, Hristova M et al (2013) ATP-mediated transactivation of the epidermal growth factor receptor in airway epithelial cells involves DUOX1-dependent oxidation of Src and ADAM17. PLoS ONE 8(1), e54391. doi:10.1371/journal.pone.0054391

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  252. Yin J, Xu K, Zhang J et al (2007) Wound-induced ATP release and EGF receptor activation in epithelial cells. J Cell Sci 120(Pt 5):815–825. doi:10.1242/jcs.03389

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  253. Buvinic S, Bravo-Zehnder M, Boyer JL et al (2007) Nucleotide P2Y1 receptor regulates EGF receptor mitogenic signaling and expression in epithelial cells. J Cell Sci 120(24):4289–4301. doi:10.1242/jcs.03490

    Article  PubMed  CAS  Google Scholar 

  254. Weisman GA, Ajit D, Garrad R et al (2012) Neuroprotective roles of the P2Y2 receptor. Purinergic Signal 8(3):559–578. doi:10.1007/s11302-012-9307-6

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  255. Seye CI, Yu N, Gonzalez FA et al (2004) The P2Y2 nucleotide receptor mediates vascular cell adhesion molecule-1 expression through interaction with VEGF receptor-2 (KDR/Flk-1). J Biol Chem 279(34):35679–35686. doi:10.1074/jbc.M401799200

    Article  PubMed  CAS  Google Scholar 

  256. Peterson TS, Camden JM, Wang Y et al (2010) P2Y2 nucleotide receptor-mediated responses in brain cells. Mol Neurobiol 41(2–3):356–366. doi:10.1007/s12035-010-8115-7

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  257. Liao Z, Cao C, Wang J et al (2014) The P2Y2 receptor interacts with VE-Cadherin and VEGF receptor-2 to regulate Rac1 activity in endothelial cells. J Biomed Sci Eng 7(14):1105–1121. doi:10.4236/jbise.2014.714109

    Article  PubMed Central  PubMed  Google Scholar 

  258. Rumjahn SM, Yokdang N, Baldwin KA et al (2009) Purinergic regulation of vascular endothelial growth factor signaling in angiogenesis. Br J Cancer 100(9):1465–1470. doi:10.1038/sj.bjc.6604998

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  259. Arthur DB, Akassoglou K, Insel PA (2006) P2Y2 and TrkA receptors interact with Src family kinase for neuronal differentiation. Biochem Biophys Res Commun 347(3):678–682. doi:10.1016/j.bbrc.2006.06.141

    Article  PubMed  CAS  Google Scholar 

  260. van Kolen K, Gilany K, Moens L et al (2006) P2Y12 receptor signalling towards PKB proceeds through IGF-I receptor cross-talk and requires activation of Src, Pyk2 and Rap1. Cell Signal 18(8):1169–1181. doi:10.1016/j.cellsig.2005.09.005

    Article  PubMed  CAS  Google Scholar 

  261. Rodriguez-Candela JL, Martin-Hernandez D, Castilla-Cortazar T (1963) Stimulation of insulin secretion in vitro by adenosine triphosphate. Nature 197:1304

    Article  Google Scholar 

  262. Levine RA, Oyama S, Kagan A et al (1970) Stimulation of insulin and growth hormone secretion by adenine nucleotides in primates. J Lab Clin Med 75(1):30–36

    PubMed  CAS  Google Scholar 

  263. Cieślak M, Roszek K (2014) Purinergic signaling in the pancreas and the therapeutic potential of ecto-nucleotidases in diabetes. Acta Biochim Pol 61(4):655–662

    PubMed  Google Scholar 

  264. Öhman J, Erlinge D (2013) At the center of the circle: purinergic signaling in the autocrine loops of pancreatic islets. WIREs Membr Transport Signaling 2(3):107–119. doi:10.1002/wmts.82

    Article  CAS  Google Scholar 

  265. Petit P, Lajoix A, Gross R (2009) P2 purinergic signalling in the pancreatic β-cell: control of insulin secretion and pharmacology. Eur J Pharm Sci 37(2):67–75. doi:10.1016/j.ejps.2009.01.007

    Article  PubMed  CAS  Google Scholar 

  266. Hazama A, Hayashi S, Okada Y (1998) Cell surface measurements of ATP release from single pancreatic beta cells using a novel biosensor technique. Pflugers Arch 437(1):31–35

    Article  PubMed  CAS  Google Scholar 

  267. Leitner JW, Sussman KE, Vatter AE et al (1975) Adenine nucleotides in the secretory granule fraction of rat islets. Endocrinology 96(3):662–677. doi:10.1210/endo-96-3-662

    Article  PubMed  CAS  Google Scholar 

  268. Chapal J, Hillaire-Buys D, Bertrand G et al (1997) Comparative effects of adenosine-5’-triphosphate and related analogues on insulin secretion from the rat pancreas. Fundam Clin Pharmacol 11(6):537–545

    Article  PubMed  CAS  Google Scholar 

  269. Bertrand G, Gross R, Chapal J et al (1989) Difference in the potentiating effect of adenosine triphosphate and alpha, beta-methylene ATP on the biphasic insulin response to glucose. Br J Pharmacol 98(3):998–1004

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  270. Loubatieres-Mariani MM, Chapal J, Lignon F et al (1979) Structural specificity of nucleotides for insulin secretory action from the isolated perfused rat pancreas. Eur J Pharmacol 59(3–4):277–286

    Article  PubMed  CAS  Google Scholar 

  271. Petit P, Manteghetti M, Puech R et al (1987) ATP and phosphate-modified adenine nucleotide analogues. Effects on insulin secretion and calcium uptake. Biochem Pharmacol 36(3):377–380

    Article  PubMed  CAS  Google Scholar 

  272. Xie L, Zhang M, Zhou W et al (2006) Extracellular ATP stimulates exocytosis via localized Ca2+ release from acidic stores in rat pancreatic β cells. Traffic 7(4):429–439. doi:10.1111/j.1600-0854.2006.00401.x

    Article  PubMed  CAS  Google Scholar 

  273. Gylfe E, Hellman B (1987) External ATP mimics carbachol in initiating calcium mobilization from pancreatic beta-cells conditioned by previous exposure to glucose. Br J Pharmacol 92(2):281–289

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  274. Chevassus H, Roig A, Belloc C et al (2002) P2Y receptor activation enhances insulin release from pancreatic beta-cells by triggering the cyclic AMP/protein kinase A pathway. Naunyn Schmiedeberg's Arch Pharmacol 366(5):464–469. doi:10.1007/s00210-002-0620-4

    Article  CAS  Google Scholar 

  275. Amisten S, Meidute-Abaraviciene S, Tan C et al (2010) ADP mediates inhibition of insulin secretion by activation of P2Y13 receptors in mice. Diabetologia 53(9):1927–1934. doi:10.1007/s00125-010-1807-8

    Article  PubMed  CAS  Google Scholar 

  276. Parandeh F, Abaraviciene SM, Amisten S et al (2008) Uridine diphosphate (UDP) stimulates insulin secretion by activation of P2Y6 receptors. Biochem Biophys Res Commun 370(3):499–503. doi:10.1016/j.bbrc.2008.03.119

    Article  PubMed  CAS  Google Scholar 

  277. Fernandez-Alvarez J, Hillaire-Buys D, Loubatières-Mariani MM et al (2001) P2 receptor agonists stimulate insulin release from human pancreatic islets. Pancreas 22(1):69–71

    Article  PubMed  CAS  Google Scholar 

  278. Jacques-Silva MC, Correa-Medina M, Cabrera O et al (2010) ATP-gated P2X3 receptors constitute a positive autocrine signal for insulin release in the human pancreatic beta cell. Proc Natl Acad Sci U S A 107(14):6465–6470. doi:10.1073/pnas.0908935107

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  279. Khan S, Yan-Do R, Duong E et al (2014) Autocrine activation of P2Y1 receptors couples Ca2+ influx to Ca2+ release in human pancreatic beta cells. Diabetologia 57(12):2535–2545. doi:10.1007/s00125-014-3368-8

    Article  PubMed  CAS  Google Scholar 

  280. Silvestre RA, Rodríguez-Gallardo J, Egido EM et al (1999) Stimulatory effect of exogenous diadenosine tetraphosphate on insulin and glucagon secretion in the perfused rat pancreas. Br J Pharmacol 128(3):795–801. doi:10.1038/sj.bjp.0702837

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  281. Bertrand G, Gross R, Ribes G et al (1990) P2 purinoceptor agonists stimulate somatostatin secretion from dog pancreas. Eur J Pharmacol 182(2):369–373

    Article  PubMed  CAS  Google Scholar 

  282. Hillaire-Buys D, Gross R, Parés-Herbuté N et al (1994) In vivo and in vitro effects of adenosine-5’-O-(2-thiodiphosphate) on pancreatic hormones in dogs. Pancreas 9(5):646–651

    Article  PubMed  CAS  Google Scholar 

  283. Salehi A, Qader SS, Grapengiesser E et al (2007) Pulses of somatostatin release are slightly delayed compared with insulin and antisynchronous to glucagon. Regul Pept 144(1–3):43–49. doi:10.1016/j.regpep.2007.06.003

    Article  PubMed  CAS  Google Scholar 

  284. Lee YH, Lee SJ, Seo MH et al (2001) ATP-induced histamine release is in part related to phospholipase A2-mediated arachidonic acid metabolism in rat peritoneal mast cells. Arch Pharm Res 24(6):552–556

    Article  PubMed  CAS  Google Scholar 

  285. Bennett JP, Cockcroft S, Gomperts BD (1981) Rat mast cells permeabilized with ATP secrete histamine in response to calcium ions buffered in the micromolar range. J Physiol 317:335–345

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  286. Cockcroft S, Gomperts BD (1979) Activation and inhibition of calcium-dependent histamine secretion by ATP ions applied to rat mast cells. J Physiol 296:229–243

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  287. Jaffar ZH, Pearce FL (1990) Histamine secretion from mast cells stimulated with ATP. Agents Actions 30(1–2):64–66

    Article  PubMed  CAS  Google Scholar 

  288. Schulman ES, Glaum MC, Post T et al (1999) ATP modulates anti-IgE-induced release of histamine from human lung mast cells. Am J Respir Cell Mol Biol 20(3):530–537. doi:10.1165/ajrcmb.20.3.3387

    Article  PubMed  CAS  Google Scholar 

  289. Di Virgilio F (2007) Liaisons dangereuses: P2X7 and the inflammasome. Trends Pharmacol Sci 28(9):465–472. doi:10.1016/j.tips.2007.07.002

    Article  PubMed  CAS  Google Scholar 

  290. Ferrari D, Pizzirani C, Adinolfi E et al (2006) The P2X7 receptor: a key player in IL-1 processing and release. J Immunol 176(7):3877–3883

    Article  PubMed  CAS  Google Scholar 

  291. Piccini A, Carta S, Tassi S et al (2008) ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1beta and IL-18 secretion in an autocrine way. Proc Natl Acad Sci U S A 105(23):8067–8072. doi:10.1073/pnas.0709684105

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  292. Gicquel T, Robert S, Loyer P et al (2015) IL-1β production is dependent of the activation of purinergic receptors and NLRP3 pathway in human macrophages. FASEB J 29(10):4162–4173. doi:10.1096/fj.14-267393

    Article  PubMed  Google Scholar 

  293. Gicquel T, Victoni T, Fautrel A et al (2014) Involvement of purinergic receptors and NOD-like receptor-family protein 3-inflammasome pathway in the adenosine triphosphate-induced cytokine release from macrophages. Clin Exp Pharmacol Physiol 41(4):279–286. doi:10.1111/1440-1681.12214

    Article  PubMed  CAS  Google Scholar 

  294. Kawano A, Tsukimoto M, Mori D et al (2012) Regulation of P2X7-dependent inflammatory functions by P2X4 receptor in mouse macrophages. Biochem Biophys Res Commun 420(1):102–107. doi:10.1016/j.bbrc.2012.02.122

    Article  PubMed  CAS  Google Scholar 

  295. Toki Y, Takenouchi T, Harada H et al (2015) Extracellular ATP induces P2X7 receptor activation in mouse Kupffer cells, leading to release of IL-1β, HMGB1, and PGE2, decreased MHC class I expression and necrotic cell death. Biochem Biophys Res Commun 458(4):771–776. doi:10.1016/j.bbrc.2015.02.011

    Article  PubMed  CAS  Google Scholar 

  296. Kojima S, Negishi Y, Tsukimoto M et al (2014) Purinergic signaling via P2X7 receptor mediates IL-1β production in Kupffer cells exposed to silica nanoparticle. Toxicology 321:13–20. doi:10.1016/j.tox.2014.03.008

    Article  PubMed  CAS  Google Scholar 

  297. Pelegrin P, Barroso-Gutierrez C, Surprenant A (2008) P2X7 receptor differentially couples to distinct release pathways for IL-1 in mouse macrophage. J Immunol 180(11):7147–7157. doi:10.4049/jimmunol.180.11.7147

    Article  PubMed  CAS  Google Scholar 

  298. Asgari E, Le Friec G, Yamamoto H et al (2013) C3a modulates IL-1 secretion in human monocytes by regulating ATP efflux and subsequent NLRP3 inflammasome activation. Blood 122(20):3473–3481. doi:10.1182/blood-2013-05-502229

    Article  PubMed  CAS  Google Scholar 

  299. Netea MG, Nold-Petry CA, Nold MF et al (2009) Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood 113(10):2324–2335. doi:10.1182/blood-2008-03-146720

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  300. Pizzirani C, Ferrari D, Chiozzi P et al (2007) Stimulation of P2 receptors causes release of IL-1beta-loaded microvesicles from human dendritic cells. Blood 109(9):3856–3864. doi:10.1182/blood-2005-06-031377

    Article  PubMed  CAS  Google Scholar 

  301. Englezou PC, Rothwell SW, Ainscough JS et al (2015) P2X7R activation drives distinct IL-1 responses in dendritic cells compared to macrophages. Cytokine 74(2):293–304. doi:10.1016/j.cyto.2015.05.013

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  302. Sanz JM, Di Virgilio F (2000) Kinetics and mechanism of ATP-dependent IL-1 beta release from microglial cells. J Immunol 164(9):4893–4898

    Article  PubMed  CAS  Google Scholar 

  303. Ferrari D, Chiozzi P, Falzoni S et al (1997) Purinergic modulation of interleukin-1 beta release from microglial cells stimulated with bacterial endotoxin. J Exp Med 185(3):579–582

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  304. Clark AK, Staniland AA, Marchand F et al (2010) P2X7-dependent release of interleukin-1beta and nociception in the spinal cord following lipopolysaccharide. J Neurosci 30(2):573–582. doi:10.1523/JNEUROSCI.3295-09.2010

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  305. Bianco F, Pravettoni E, Colombo A et al (2005) Astrocyte-derived ATP induces vesicle shedding and IL-1 release from microglia. J Immunol 174(11):7268–7277. doi:10.4049/jimmunol.174.11.7268

    Article  PubMed  CAS  Google Scholar 

  306. Kanjanamekanant K, Luckprom P, Pavasant P (2013) Mechanical stress-induced interleukin-1beta expression through adenosine triphosphate/P2X7 receptor activation in human periodontal ligament cells. J Periodontal Res 48(2):169–176. doi:10.1111/j.1600-0765.2012.01517.x

    Article  PubMed  CAS  Google Scholar 

  307. Carta S, Penco F, Lavieri R et al (2015) Cell stress increases ATP release in NLRP3 inflammasome-mediated autoinflammatory diseases, resulting in cytokine imbalance. Proc Natl Acad Sci U S A 112(9):2835–2840. doi:10.1073/pnas.1424741112

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  308. Wilson HL, Varcoe RW, Stokes L et al (2007) P2X receptor characterization and IL-1/IL-1Ra release from human endothelial cells. Br J Pharmacol 151(1):115–127. doi:10.1038/sj.bjp.0707213

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  309. Wilson HL, Francis SE, Dower SK et al (2004) Secretion of intracellular IL-1 receptor antagonist (Type 1) is dependent on P2X7 receptor activation. J Immunol 173(2):1202–1208. doi:10.4049/jimmunol.173.2.1202

    Article  PubMed  CAS  Google Scholar 

  310. Glas R, Sauter NS, Schulthess FT et al (2009) Purinergic P2X7 receptors regulate secretion of interleukin-1 receptor antagonist and beta cell function and survival. Diabetologia 52(8):1579–1588. doi:10.1007/s00125-009-1349-0

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  311. Kouzaki H, Iijima K, Kobayashi T et al (2011) The danger signal, extracellular ATP, is a sensor for an airborne allergen and triggers IL-33 release and innate Th2-type responses. J Immunol 186(7):4375–4387. doi:10.4049/jimmunol.1003020

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  312. Martin U, Scholler J, Gurgel J et al (2009) Externalization of the leaderless cytokine IL-1 F6 occurs in response to lipopolysaccharide/ATP activation of transduced bone marrow macrophages. J Immunol 183(6):4021–4030. doi:10.4049/jimmunol.0803301

    Article  PubMed  CAS  Google Scholar 

  313. Gavala ML, Liu Y, Lenertz LY et al (2013) Nucleotide receptor P2RX7 stimulation enhances LPS-induced interferon-β production in murine macrophages. J Leukoc Biol 94(4):759–768. doi:10.1189/jlb.0712351

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  314. Schilling E, Hauschildt S (2012) Extracellular ATP induces P2X7-dependent nicotinamide phosphoribosyltransferase release in LPS-activated human monocytes. Innate Immun 18(5):738–744. doi:10.1177/1753425912439614

    Article  PubMed  CAS  Google Scholar 

  315. Erlinge D (1998) Extracellular ATP: a growth factor for vascular smooth muscle cells. Gen Pharmacol 31(1):1–8

    Article  PubMed  CAS  Google Scholar 

  316. Burnstock G (2013) Purinergic signalling: pathophysiology and therapeutic potential. Keio J Med 62(3):63–73

    Article  PubMed  CAS  Google Scholar 

  317. Neary JT, Zimmermann H (2009) Trophic functions of nucleotides in the central nervous system. Trends Neurosci 32(4):189–198. doi:10.1016/j.tins.2009.01.002

    Article  PubMed  CAS  Google Scholar 

  318. Grimm I, Ullsperger SN, Zimmermann H (2010) Nucleotides and epidermal growth factor induce parallel cytoskeletal rearrangements and migration in cultured adult murine neural stem cells. Acta Physiol (Oxf) 199(2):181–189. doi:10.1111/j.1748-1716.2010.02092.x

    Article  CAS  Google Scholar 

  319. Grimm I, Messemer N, Stanke M et al (2009) Coordinate pathways for nucleotide and EGF signaling in cultured adult neural progenitor cells. J Cell Sci 122(14):2524–2533. doi:10.1242/jcs.044891

    Article  PubMed  CAS  Google Scholar 

  320. Mishra SK (2006) Extracellular nucleotide signaling in adult neural stem cells: synergism with growth factor-mediated cellular proliferation. Development 133(4):675–684. doi:10.1242/dev.02233

    Article  PubMed  CAS  Google Scholar 

  321. Arthur DB, Georgi S, Akassoglou K et al (2006) Inhibition of apoptosis by P2Y2 receptor activation: novel pathways for neuronal survival. J Neurosci 26(14):3798–3804. doi:10.1523/JNEUROSCI.5338-05.2006

    Article  PubMed  CAS  Google Scholar 

  322. Henquin JC (2000) Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49(11):1751–1760

    Article  PubMed  CAS  Google Scholar 

  323. Petit P, Bertrand G, Schmeer W et al (1989) Effects of extracellular adenine nucleotides on the electrical, ionic and secretory events in mouse pancreatic beta-cells. Br J Pharmacol 98(3):875–882

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  324. Léon C, Freund M, Latchoumanin O et al (2005) The P2Y1 receptor is involved in the maintenance of glucose homeostasis and in insulin secretion in mice. Purinergic Signal 1(2):145–151. doi:10.1007/s11302-005-6209-x

    Article  PubMed Central  PubMed  Google Scholar 

  325. Tudurí E, Filiputti E, Carneiro EM et al (2008) Inhibition of Ca2+ signaling and glucagon secretion in mouse pancreatic alpha-cells by extracellular ATP and purinergic receptors. Am J Physiol Endocrinol Metab 294(5):E952–E960. doi:10.1152/ajpendo.00641.2007

    Article  PubMed  CAS  Google Scholar 

  326. Abbracchio MP, Burnstock G, Boeynaems J et al (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58(3):281–341. doi:10.1124/pr.58.3.3

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  327. Castillo CJ, Moro MA, Del Valle M et al (1992) Diadenosine tetraphosphate is co-released with ATP and catecholamines from bovine adrenal medulla. J Neurochem 59(2):723–732

    Article  PubMed  CAS  Google Scholar 

  328. Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27(1):519–550. doi:10.1146/annurev.immunol.021908.132612

    Article  PubMed  CAS  Google Scholar 

  329. Di Virgilio F (2013) The therapeutic potential of modifying inflammasomes and NOD-like receptors. Pharmacol Rev 65(3):872–905. doi:10.1124/pr.112.006171

    Article  PubMed  CAS  Google Scholar 

  330. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140(6):821–832. doi:10.1016/j.cell.2010.01.040

    Article  PubMed  CAS  Google Scholar 

  331. Church LD, Cook GP, McDermott MF (2008) Primer: inflammasomes and interleukin 1beta in inflammatory disorders. Nat Clin Pract Rheumatol 4(1):34–42. doi:10.1038/ncprheum0681

    Article  PubMed  CAS  Google Scholar 

  332. Gudipaty L, Munetz J, Verhoef PA et al (2003) Essential role for Ca2+ in regulation of IL-1beta secretion by P2X7 nucleotide receptor in monocytes, macrophages, and HEK-293 cells. Am J Physiol Cell Physiol 285(2):C286–C299. doi:10.1152/ajpcell.00070.2003

    Article  PubMed  CAS  Google Scholar 

  333. Di Virgilio F, Chiozzi P, Ferrari D et al (2001) Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood 97(3):587–600

    Article  PubMed  Google Scholar 

  334. Choi AJS, Ryter SW (2014) Inflammasomes: molecular regulation and implications for metabolic and cognitive diseases. Mol Cell 37(6):441–448. doi:10.14348/molcells.2014.0104

    Article  CAS  Google Scholar 

  335. Ferrari D, Chiozzi P, Falzoni S et al (1997) Extracellular ATP triggers IL-1 beta release by activating the purinergic P2Z receptor of human macrophages. J Immunol 159(3):1451–1458

    PubMed  CAS  Google Scholar 

  336. Surprenant A, Rassendren F, Kawashima E et al (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272(5262):735–738

    Article  PubMed  CAS  Google Scholar 

  337. Di Virgilio F (1995) The P2Z purinoceptor: an intriguing role in immunity, inflammation and cell death. Immunol Today 16(11):524–528. doi:10.1016/0167-5699(95)80045-X

    Article  PubMed  Google Scholar 

  338. Franceschini A, Capece M, Chiozzi P et al (2015) The P2X7 receptor directly interacts with the NLRP3 inflammasome scaffold protein. FASEB J 29(6):2450–2461. doi:10.1096/fj.14-268714

    Article  PubMed  CAS  Google Scholar 

  339. Arend WP (2002) The balance between IL-1 and IL-1Ra in disease. Cytokine Growth Factor Rev 13(4–5):323–340. doi:10.1016/S1359-6101(02)00020-5

    Article  PubMed  CAS  Google Scholar 

  340. Dinarello CA (2007) Historical insights into cytokines. Eur J Immunol 37(Suppl 1):S34–S45. doi:10.1002/eji.200737772

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  341. Novick D, Kim S, Kaplanski G et al (2013) Interleukin-18, more than a Th1 cytokine. Semin Immunol 25(6):439–448. doi:10.1016/j.smim.2013.10.014

    Article  PubMed  CAS  Google Scholar 

  342. Grahnert A, Grahnert A, Klein C et al (2011) Review: NAD+: a modulator of immune functions. Innate Immun 17(2):212–233. doi:10.1177/1753425910361989

    Article  PubMed  CAS  Google Scholar 

  343. Osipchuk Y, Cahalan M (1992) Cell-to-cell spread of calcium signals mediated by ATP receptors in mast cells. Nature 359(6392):241–244. doi:10.1038/359241a0

    Article  PubMed  CAS  Google Scholar 

  344. Yang S, Cheek DJ, Westfall DP et al (1994) Purinergic axis in cardiac blood vessels. Agonist-mediated release of ATP from cardiac endothelial cells. Circ Res 74(3):401–407

    Article  PubMed  CAS  Google Scholar 

  345. Bodin P, Burnstock G (1996) ATP-stimulated release of ATP by human endothelial cells. J Cardiovasc Pharmacol 27(6):872–875

    Article  PubMed  CAS  Google Scholar 

  346. Newman EA (2001) Propagation of intercellular calcium waves in retinal astrocytes and Müller cells. J Neurosci 21(7):2215–2223

    PubMed Central  PubMed  CAS  Google Scholar 

  347. Pearson RA, Dale N, Llaudet E et al (2005) ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation. Neuron 46(5):731–744. doi:10.1016/j.neuron.2005.04.024

    Article  PubMed  CAS  Google Scholar 

  348. Frayling C, Britton R, Dale N (2011) ATP-mediated glucosensing by hypothalamic tanycytes. J Physiol 589(Pt 9):2275–2286. doi:10.1113/jphysiol.2010.202051

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  349. Weissman TA, Riquelme PA, Ivic L et al (2004) Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 43(5):647–661. doi:10.1016/j.neuron.2004.08.015

    Article  PubMed  CAS  Google Scholar 

  350. Dou Y, Wu H, Li H et al (2012) Microglial migration mediated by ATP-induced ATP release from lysosomes. Cell Res 22(6):1022–1033. doi:10.1038/cr.2012.10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  351. Gylfe E, Grapengiesser E, Dansk H et al (2012) The neurotransmitter ATP triggers Ca2+ responses promoting coordination of pancreatic islet oscillations. Pancreas 41(2):258–263. doi:10.1097/MPA.0b013e3182240586

    Article  PubMed  CAS  Google Scholar 

  352. Hellman B, Dansk H, Grapengiesser E (2004) Pancreatic beta-cells communicate via intermittent release of ATP. Am J Physiol Endocrinol Metab 286(5):E759–E765. doi:10.1152/ajpendo.00452.2003

    Article  PubMed  CAS  Google Scholar 

  353. Kawano A, Kadomatsu R, Ono M et al (2015) Autocrine regulation of UVA-induced IL-6 production via release of ATP and activation of P2Y receptors. PLoS ONE 10(6), e0127919. doi:10.1371/journal.pone.0127919

    Article  PubMed Central  PubMed  Google Scholar 

  354. Pannasch U, Rouach N (2013) Emerging role for astroglial networks in information processing: from synapse to behavior. Trends Neurosci 36(7):405–417. doi:10.1016/j.tins.2013.04.004

    Article  PubMed  CAS  Google Scholar 

  355. Arcuino G, Lin JH, Takano T et al (2002) Intercellular calcium signaling mediated by point-source burst release of ATP. Proc Natl Acad Sci U S A 99(15):9840–9845. doi:10.1073/pnas.152588599

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  356. Agulhon C, Sun M, Murphy T et al (2012) Calcium signaling and gliotransmission in normal vs. reactive astrocytes. Front Pharmacol 3:139. doi:10.3389/fphar.2012.00139

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  357. Rossi DJ, Brady JD, Mohr C (2007) Astrocyte metabolism and signaling during brain ischemia. Nat Neurosci 10(11):1377–1386. doi:10.1038/nn2004

    Article  PubMed  CAS  Google Scholar 

  358. Melani A, Corti F, Stephan H et al (2012) Ecto-ATPase inhibition: ATP and adenosine release under physiological and ischemic in vivo conditions in the rat striatum. Exp Neurol 233(1):193–204. doi:10.1016/j.expneurol.2011.09.036

    Article  PubMed  CAS  Google Scholar 

  359. Beigi R, Kobatake E, Aizawa M et al (1999) Detection of local ATP release from activated platelets using cell surface-attached firefly luciferase. Am J Physiol 276(1 Pt 1):C267–C278

    PubMed  CAS  Google Scholar 

  360. Di Virgilio F, Vuerich M (2015) Purinergic signaling in the immune system. Auton Neurosci 191:117–123. doi:10.1016/j.autneu.2015.04.011

    Article  PubMed  CAS  Google Scholar 

  361. Riteau N, Baron L, Villeret B et al (2012) ATP release and purinergic signaling: a common pathway for particle-mediated inflammasome activation. Cell Death Dis 3, e403. doi:10.1038/cddis.2012.144

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  362. Rossi L, Salvestrini V, Ferrari D et al (2012) The sixth sense: hematopoietic stem cells detect danger through purinergic signaling. Blood 120(12):2365–2375. doi:10.1182/blood-2012-04-422378

    Article  PubMed  CAS  Google Scholar 

  363. Alves LA, Bezerra RJS, Faria RX et al (2013) Physiological roles and potential therapeutic applications of the P2X7 receptor in inflammation and pain. Molecules 18(9):10953–10972. doi:10.3390/molecules180910953

    Article  PubMed  CAS  Google Scholar 

  364. Arulkumaran N, Unwin RJ, Tam FW (2011) A potential therapeutic role for P2X7 receptor (P2X7R) antagonists in the treatment of inflammatory diseases. Expert Opin Investig Drugs 20(7):897–915. doi:10.1517/13543784.2011.578068

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmermann, H. Extracellular ATP and other nucleotides—ubiquitous triggers of intercellular messenger release. Purinergic Signalling 12, 25–57 (2016). https://doi.org/10.1007/s11302-015-9483-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-015-9483-2

Keywords

Navigation