Skip to main content
Log in

Antagonism of the ATP-gated P2X7 receptor: a potential therapeutic strategy for cancer

  • Review Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

The P2X receptor 7 (P2X7R) is a plasma membrane receptor sensing extracellular ATP associated with a wide variety of cellular functions. It is most commonly expressed on immune cells and is highly upregulated in a number of human cancers where it can play a trophic role in tumorigenesis. Activation of this receptor leads to the formation of a non-selective cation channel, which has been associated with several cellular functions mediated by the PI3K/Akt pathway and protein kinases. Due to its broad range of functions, the receptor represents a potential therapeutic target for a number of cancers. This review describes the range of mechanisms associated with P2X7R activation in cancer settings and highlights the potential of targeted inhibition of P2X7R as a therapy. It also describes in detail a number of key P2X7R antagonists currently in pre-clinical and clinical development, including oxidised ATP, Brilliant Blue G (BBG), KN-62, KN-04, A740003, A438079, GSK1482160, CE-224535, JNJ-54175446, JNJ-55308942, and AZ10606120. Lastly, it summarises the in vivo studies and clinical trials associated with the use and development of these P2X7R antagonists in different disease contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Burnstock G (2018) Purine and purinergic receptors. Brain Neurosci Adv 2:2398212818817494. https://doi.org/10.1177/2398212818817494

    Article  PubMed  PubMed Central  Google Scholar 

  2. Burnstock G Purinergic nerves. Pharmacol Rev 24(3):509–1972 http://pharmrev.aspetjournals.org/content/24/3/509.abstract

  3. Burnstock G, Fredholm BB, North RA, Verkhratsky A (2010) The birth and postnatal development of purinergic signalling. Acta Physiol 199(2):93–147. https://doi.org/10.1111/j.1748-1716.2010.02114.x

    Article  CAS  Google Scholar 

  4. Burnstock G, Verkhratsky A (2009) Evolutionary origins of the purinergic signalling system. Acta Physiol 195(4):415–447. https://doi.org/10.1111/j.1748-1716.2009.01957.x

    Article  CAS  Google Scholar 

  5. Fountain SJ (2013) Primitive ATP-activated P2X receptors: discovery, function and pharmacology, (in eng). Front Cell Neurosci 7:247–247. https://doi.org/10.3389/fncel.2013.00247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Burnstock G (1996) Purinoceptors: ontogeny and phylogeny. Drug Dev Res 39(3-4):204–242. https://doi.org/10.1002/(sici)1098-2299(199611/12)39:3/4<204::Aid-ddr2>3.0.Co;2-v

    Article  CAS  Google Scholar 

  7. Burnstock G, Kennedy C (1985) Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol: Vasc Syst 16(5):433–440. https://doi.org/10.1016/0306-3623(85)90001-1

    Article  CAS  Google Scholar 

  8. Abbracchio MP, Burnstock G (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther 64(3):445–475. https://doi.org/10.1016/0163-7258(94)00048-4

    Article  CAS  PubMed  Google Scholar 

  9. Neary JT, Zimmermann H (2009) Trophic functions of nucleotides in the central nervous system. Trends Neurosci 32(4):189–198. https://doi.org/10.1016/j.tins.2009.01.002

    Article  CAS  PubMed  Google Scholar 

  10. Kopp R, Krautloher A, Ramírez-Fernández A, Nicke A (2019) P2X7 interactions and signaling—making head or tail of it, (in English). Front Mol Neurosci, Review 12(183). https://doi.org/10.3389/fnmol.2019.00183

  11. Khadra A, Tomić M, Yan Z, Zemkova H, Sherman A, Stojilkovic SS (2013) Dual gating mechanism and function of P2X7 receptor channels, (in eng). Biophys J 104(12):2612–2621. https://doi.org/10.1016/j.bpj.2013.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Burnstock G, Knight GE (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240: Academic Press:31–304

    Article  CAS  Google Scholar 

  13. He Y-Q, Chen J, Lu X-J, Shi Y-H (2013) Characterization of P2X7R and its function in the macrophages of ayu, Plecoglossus altivelis, (in eng). PLoS One 8(2):e57505–e57505. https://doi.org/10.1371/journal.pone.0057505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Burnstock G, Knight GE (2018) The potential of P2X7 receptors as a therapeutic target, including inflammation and tumour progression, (in eng). Purinergic Signal 14(1):1–18. https://doi.org/10.1007/s11302-017-9593-0

    Article  CAS  PubMed  Google Scholar 

  15. Furini F, Giuliani AL, Parlati ME, Govoni M, Di Virgilio F, Bortoluzzi A (2019) P2X7 receptor expression in patients with serositis related to systemic lupus erythematosus, (in English). Front Pharmacol, Original Research 10(435). https://doi.org/10.3389/fphar.2019.00435

  16. Lara R et al (2020) P2X7 in cancer: from molecular mechanisms to therapeutics, (in English). Front Pharmacol, Review 11(793). https://doi.org/10.3389/fphar.2020.00793

  17. Burnstock G (2008) Unresolved issues and controversies in purinergic signalling. J Physiol 586(14):3307–3312. https://doi.org/10.1113/jphysiol.2008.155903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Adinolfi E et al (2012) Expression of P2X7 receptor increases in vivo tumor growth, (in eng). Cancer Res 72(12):2957–2969. https://doi.org/10.1158/0008-5472.Can-11-1947

    Article  CAS  PubMed  Google Scholar 

  19. Cockcroft S, Gomperts BD (1980) The ATP4− receptor of rat mast cells, (in eng). Biochem J 188(3):789–798. https://doi.org/10.1042/bj1880789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cockcroft S, Gomperts BD (1979) ATP induces nucleotide permeability in rat mast cells. Nature 279(5713):541–542. https://doi.org/10.1038/279541a0

    Article  CAS  PubMed  Google Scholar 

  21. Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272(5262):735–738. https://doi.org/10.1126/science.272.5262.735

    Article  CAS  PubMed  Google Scholar 

  22. Steinberg TH, Newman AS, Swanson JA, Silverstein SC (1987) ATP4− permeabilizes the plasma membrane of mouse macrophages to fluorescent dyes. J Biol Chem 262(18):8884–8888 http://www.jbc.org/content/262/18/8884.abstract

    Article  CAS  Google Scholar 

  23. Zheng LM, Zychlinsky A, Liu CC, Ojcius DM, Young JD (1991) Extracellular ATP as a trigger for apoptosis or programmed cell death, (in eng). J Cell Biol 112(2):279–288. https://doi.org/10.1083/jcb.112.2.279

    Article  CAS  PubMed  Google Scholar 

  24. Adinolfi E, Giuliani AL, De Marchi E, Pegoraro A, Orioli E, Di Virgilio F (2018) The P2X7 receptor: a main player in inflammation. Biochem Pharmacol 151:234–244. https://doi.org/10.1016/j.bcp.2017.12.021

    Article  CAS  PubMed  Google Scholar 

  25. Hazuda DJ, Strickler J, Kueppers F, Simon PL, Young PR (1990) Processing of precursor interleukin 1 beta and inflammatory disease. J Biol Chem 265(11):6318–6322 http://www.jbc.org/content/265/11/6318.abstract

    Article  CAS  Google Scholar 

  26. Amoroso F et al (2016) P2X7 targeting inhibits growth of human mesothelioma, (in eng). Oncotarget 7(31):49664–49676. https://doi.org/10.18632/oncotarget.10430

    Article  PubMed  PubMed Central  Google Scholar 

  27. Monif M, Reid CA, Powell KL, Smart ML, Williams DA (2009) The P2X7 receptor drives microglial activation and proliferation: a trophic role for P2X7R pore, (in eng). J Neurosci 29(12):3781–3791. https://doi.org/10.1523/JNEUROSCI.5512-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ji Z, Xie Y, Guan Y, Zhang Y, Cho KS, Ji M, You Y (2018) Involvement of P2X7 receptor in proliferation and migration of human glioma cells. BioMed Res Int 2018, Art:12–8591397. https://doi.org/10.1155/2018/8591397

    Article  CAS  Google Scholar 

  29. Ryu JK, Jantaratnotai N, Serrano-Perez MC, McGeer PL, McLarnon JG (2011) Block of purinergic P2X7R inhibits tumor growth in a C6 glioma brain tumor animal model. J Neuropathol Exp Neurol 70(1):13–22. https://doi.org/10.1097/NEN.0b013e318201d4d4

    Article  CAS  PubMed  Google Scholar 

  30. Giannuzzo A, Saccomano M, Napp J, Ellegaard M, Alves F, Novak I (2016) Targeting of the P2X7 receptor in pancreatic cancer and stellate cells, (in eng). Int J Cancer 139(11):2540–2552. https://doi.org/10.1002/ijc.30380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Amoroso F et al (2015) The P2X7 receptor is a key modulator of the PI3K/GSK3β/VEGF signaling network: evidence in experimental neuroblastoma. Oncogene 34(41):5240–5251. https://doi.org/10.1038/onc.2014.444

    Article  CAS  PubMed  Google Scholar 

  32. Kan LK, Seneviratne S, Drummond KJ, Williams DA, O’Brien TJ, Monif M (2020) P2X7 receptor antagonism inhibits tumour growth in human high-grade gliomas. Purinergic Signal. https://doi.org/10.1007/s11302-020-09705-2

  33. Roger S, Jelassi B, Couillin I, Pelegrin P, Besson P, Jiang L-H (2015) Understanding the roles of the P2X7 receptor in solid tumour progression and therapeutic perspectives. Biochim Biophys Acta (BBA) - Biomembr 1848(10) Part B:2584–2602. https://doi.org/10.1016/j.bbamem.2014.10.029

    Article  CAS  Google Scholar 

  34. Slater M, Danieletto S, Pooley M, Cheng Teh L, Gidley-Baird A, Barden JA (Jan 2004) Differentiation between cancerous and normal hyperplastic lobules in breast lesions, (in eng). Breast Cancer Res Treat 83(1):1–10. https://doi.org/10.1023/B:BREA.0000010670.85915.0f

    Article  PubMed  Google Scholar 

  35. Slater M, Danieletto S, Gidley-Baird A, Teh LC, Barden JA (2004) Early prostate cancer detected using expression of non-functional cytolytic P2X7 receptors. Histopathology 44(3):206–215. https://doi.org/10.1111/j.0309-0167.2004.01798.x

    Article  CAS  PubMed  Google Scholar 

  36. Li X, Qi X, Zhou L, Fu W, Abdul-Karim FW, MacLennan G, Gorodeski GI (2009) P2X(7) receptor expression is decreased in epithelial cancer cells of ectodermal, uro-genital sinus, and distal paramesonephric duct origin, (in eng). Purinergic Signal 5(3):351–368. https://doi.org/10.1007/s11302-009-9161-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu Z, Liu Y, Xu L, An H, Chang Y, Yang Y, Zhang W, Xu J (2015) P2X7 receptor predicts postoperative cancer-specific survival of patients with clear-cell renal cell carcinoma, (in eng). Cancer Sci 106(9):1224–1231. https://doi.org/10.1111/cas.12736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Calik I, Calik M, Turken G, Ozercan IH A promising independent prognostic biomarker in colorectal cancer: P2X7 receptor. Int J Clin Exp Pathol 13(2):107–121 http://europepmc.org/abstract/MED/32211091https://europepmc.org/articles/PMC7061807https://europepmc.org/articles/PMC7061807?pdf=render

  39. Benzaquen J, Dit Hreich SJ, Heeke S, Juhel T, Lalvee S, Bauwens S, Saccani S, Lenormand P, Hofman V, Butori M, Leroy S, Berthet JP, Marquette CH, Hofman P, Vouret-Craviari V (2020) P2RX7B is a new theranostic marker for lung adenocarcinoma patients. Theranostics, Research Paper 10(24):10849–10860. https://doi.org/10.7150/thno.48229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. De Marchi E et al (2019) The P2X7 receptor modulates immune cells infiltration, ectonucleotidases expression and extracellular ATP levels in the tumor microenvironment. Oncogene 38(19):3636–3650. https://doi.org/10.1038/s41388-019-0684-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pegoraro A, De Marchi E, Adinolfi E (2021) P2X7 variants in oncogenesis, (in eng). Cells 10(1). https://doi.org/10.3390/cells10010189

  42. Roger S, Pelegrin P (2011) P2X7 receptor antagonism in the treatment of cancers. Expert Opinion Investig Drugs 20:875–880. https://doi.org/10.1517/13543784.2011.583918

    Article  CAS  Google Scholar 

  43. Pellegatti P, Raffaghello L, Bianchi G, Piccardi F, Pistoia V, Di Virgilio F (2008) Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase, (in eng). PLoS One 3(7):e2599–e2599. https://doi.org/10.1371/journal.pone.0002599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bergamin LS et al (2019) Role of the P2X7 receptor in in vitro and in vivo glioma tumor growth, (in eng). Oncotarget 10(47):4840–4856. https://doi.org/10.18632/oncotarget.27106

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mohammed A et al (2017) Lack of chemopreventive effects of P2X7R inhibitors against pancreatic cancer, (in eng). Oncotarget 8(58):97822–97834. https://doi.org/10.18632/oncotarget.22085

    Article  PubMed  PubMed Central  Google Scholar 

  46. Novak I (2003) ATP as a signaling molecule: the exocrine focus. Physiology 18(1):12–17. https://doi.org/10.1152/nips.01409.2002

    Article  CAS  Google Scholar 

  47. Gutiérrez-Martín Y et al (2011) P2X7 receptors trigger ATP exocytosis and modify secretory vesicle dynamics in neuroblastoma cells. J Biol Chem 286:11370–11381. https://doi.org/10.1074/jbc.M110.139410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ohshima Y, Tsukimoto M, Takenouchi T, Harada H, Suzuki A, Sato M, Kitani H, Kojima S (2010) Gamma-irradiation induces P2X(7) receptor-dependent ATP release from B16 melanoma cells, (in eng). Biochim Biophys Acta 1800(1):40–46. https://doi.org/10.1016/j.bbagen.2009.10.008

    Article  CAS  PubMed  Google Scholar 

  49. Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer, (in eng). Nat Rev Drug Discov 8(8):627–644. https://doi.org/10.1038/nrd2926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brazil DP, Hemmings BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26(11):657–664. https://doi.org/10.1016/S0968-0004(01)01958-2

    Article  CAS  PubMed  Google Scholar 

  51. Lauring J, Park BH, Wolff AC (2013) The phosphoinositide-3-kinase-Akt-mTOR pathway as a therapeutic target in breast cancer, (in eng). J Natl Compr Canc Netw 11(6):670–678. https://doi.org/10.6004/jnccn.2013.0086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shaw RJ, Cantley LC (2006) Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441(7092):424–430. https://doi.org/10.1038/nature04869

    Article  CAS  Google Scholar 

  53. Zhang Y, Cheng H, Li W, Wu H, Yang Y (2019) Highly-expressed P2X7 receptor promotes growth and metastasis of human HOS/MNNG osteosarcoma cells via PI3K/Akt/GSK3β/β-catenin and mTOR/HIF1α/VEGF signaling. Int J Cancer 145(4):1068–1082. https://doi.org/10.1002/ijc.32207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Grol MW, Zelner I, Dixon SJ (2011) P2X7-mediated calcium influx triggers a sustained, PI3K-dependent increase in metabolic acid production by osteoblast-like cells. Am J Physiol-Endocrinol Metab 302(5):E561–E575. https://doi.org/10.1152/ajpendo.00209.2011

    Article  CAS  PubMed  Google Scholar 

  55. Karar J, Maity A (2011) PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci 4:51. https://doi.org/10.3389/fnmol.2011.00051 https://www.frontiersin.org/article/10.3389/fnmol.2011.00051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gómez-Villafuertes R, García-Huerta P, Díaz-Hernández JI, Miras-Portugal MT (2015) PI3K/Akt signaling pathway triggers P2X7 receptor expression as a pro-survival factor of neuroblastoma cells under limiting growth conditions, (in eng). Sci Rep 5:18417–18417. https://doi.org/10.1038/srep18417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Adinolfi E, Callegari MG, Ferrari D, Bolognesi C, Minelli M, Wieckowski MR, Pinton P, Rizzuto R, di Virgilio F (2005) Basal activation of the P2X7 ATP receptor elevates mitochondrial calcium and potential, increases cellular ATP levels, and promotes serum-independent growth, (in eng). Mol Biol Cell 16(7):3260–3272. https://doi.org/10.1091/mbc.e04-11-1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang L, Wang JN, Tang JM, Kong X, Yang JY, Zheng F, Guo LY, Huang YZ, Zhang L, Tian L, Cao SF, Tuo CH, Guo HL, Chen SY (2012) VEGF is essential for the growth and migration of human hepatocellular carcinoma cells, (in eng). Mol Biol Rep 39(5):5085–5093. https://doi.org/10.1007/s11033-011-1304-2

    Article  CAS  PubMed  Google Scholar 

  59. Brisson L et al (2020) P2X7 receptor promotes mouse mammary cancer cell invasiveness and tumour progression, and is a target for anticancer treatment, (in eng). Cancers (Basel) 12(9):2342. https://doi.org/10.3390/cancers12092342

    Article  CAS  Google Scholar 

  60. Amoroso F, Falzoni S, Adinolfi E, Ferrari D, Di Virgilio F (2012) The P2X7 receptor is a key modulator of aerobic glycolysis, (in eng). Cell Death Dis 3(8):e370–e370. https://doi.org/10.1038/cddis.2012.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gendron F-P, Neary JT, Theiss PM, Sun GY, Gonzalez FA, Weisman GA (2003) Mechanisms of P2X7 receptor-mediated ERK1/2 phosphorylation in human astrocytoma cells. Am J Physiol-Cell Physiol 284(2):C571–C581. https://doi.org/10.1152/ajpcell.00286.2002

    Article  CAS  PubMed  Google Scholar 

  62. Humphreys BD, Rice J, Kertesy SB, Dubyak GR (2000) SAPK/JNK activation and apoptotic induction by the macrophage P2X7 nucleotide receptor. J Biol Chem http://www.jbc.org/content/early/2000/06/14/jbc.M002770200.short

  63. Lim PS, Sutton CR, Rao S (2015) Protein kinase C in the immune system: from signalling to chromatin regulation, (in eng). Immunology 146(4):508–522. https://doi.org/10.1111/imm.12510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Armstrong S, Pereverzev A, Dixon SJ, Sims SM (2009) Activation of P2X7 receptors causes isoform-specific translocation of protein kinase C in osteoclasts. J Cell Sci 122(1):136. https://doi.org/10.1242/jcs.031534

    Article  CAS  PubMed  Google Scholar 

  65. Leduc-Pessah H, Weilinger NL, Fan CY, Burma NE, Thompson RJ, Trang T (2017) Site-specific regulation of P2X7 receptor function in microglia gates morphine analgesic tolerance, (in eng). J Neurosci 37(42):10154–10172. https://doi.org/10.1523/JNEUROSCI.0852-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim M, Jiang LH, Wilson HL, North RA, Surprenant A (2001) Proteomic and functional evidence for a P2X7 receptor signalling complex, (in eng). EMBO J 20(22):6347–6358. https://doi.org/10.1093/emboj/20.22.6347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vega FM, Ridley AJ (2008) Rho GTPases in cancer cell biology. FEBS Letters 582(14):2093–2101. https://doi.org/10.1016/j.febslet.2008.04.039

    Article  CAS  PubMed  Google Scholar 

  68. Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S (2017) The P2X7 receptor in infection and inflammation. Immunity 47(1):15–31. https://doi.org/10.1016/j.immuni.2017.06.020

    Article  CAS  PubMed  Google Scholar 

  69. Aymeric L et al (2010) Tumor cell death and ATP release prime dendritic cells and efficient anticancer immunity, (in eng). Cancer Res 70(3):855–858. https://doi.org/10.1158/0008-5472.Can-09-3566

    Article  CAS  PubMed  Google Scholar 

  70. Adinolfi E, Pizzirani C, Idzko M, Panther E, Norgauer J, di Virgilio F, Ferrari D (2005) P2X(7) receptor: death or life?, (in eng). Purinergic Signal 1(3):219–227. https://doi.org/10.1007/s11302-005-6322-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Murgia M, Hanau S, Pizzo P, Rippa M, Di Virgilio F (1993) Oxidized ATP: an irreversible inhibitor of the macrophage purinergic P2Z receptor. J Biol Chem 268(11):8199–8203 http://www.jbc.org/content/268/11/8199.abstract

    Article  CAS  Google Scholar 

  72. Di Virgilio F (2003) Novel data point to a broader mechanism of action of oxidized ATP: the P2X7 receptor is not the only target, (in eng). Br J Pharmacol 140(3):441–443. https://doi.org/10.1038/sj.bjp.0705469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Beigi RD, Kertesy SB, Aquilina G, Dubyak GR (2003) Oxidized ATP (oATP) attenuates proinflammatory signaling via P2 receptor-independent mechanisms, (in eng). Br J Pharmacol 140(3):507–519. https://doi.org/10.1038/sj.bjp.0705470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vergani A, Fotino C, D'Addio F, Tezza S, Podetta M, Gatti F, Chin M, Bassi R, Molano RD, Corradi D, Gatti R, Ferrero ME, Secchi A, Grassi F, Ricordi C, Sayegh MH, Maffi P, Pileggi A, Fiorina P (2013) Effect of the purinergic inhibitor oxidized ATP in a model of islet allograft rejection, (in eng). Diabetes 62(5):1665–1675. https://doi.org/10.2337/db12-0242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Peng W, Cotrina ML, Han X, Yu H, Bekar L, Blum L, Takano T, Tian GF, Goldman SA, Nedergaard M (2009) Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury, (in eng). Proc Natl Acad Sci U S A 106(30):12489–12493. https://doi.org/10.1073/pnas.0902531106

    Article  PubMed  PubMed Central  Google Scholar 

  76. Jiang LH, Mackenzie AB, North RA, Surprenant A (Jul 2000) Brilliant Blue G selectively blocks ATP-gated rat P2X(7) receptors, (in eng). Mol Pharmacol 58(1):82–88

    Article  CAS  Google Scholar 

  77. Remy M et al (2008) An in vivo evaluation of Brilliant Blue G in animals and humans, (in English). Br J Ophthalmol 92(8):1142. https://doi.org/10.1136/bjo.2008.138164

    Article  CAS  PubMed  Google Scholar 

  78. Bin Dayel A, Evans RJ, Schmid R (2019) Mapping the site of action of human P2X7 receptor antagonists AZ11645373, Brilliant Blue G, KN-62, calmidazolium, and ZINC58368839 to the intersubunit allosteric pocket, (in eng). Mol Pharmacol 96(3):355–363. https://doi.org/10.1124/mol.119.116715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Carmo MRS et al (2014) The P2X7 receptor antagonist Brilliant Blue G attenuates contralateral rotations in a rat model of Parkinsonism through a combined control of synaptotoxicity, neurotoxicity and gliosis. Neuropharmacology 81:142–152. https://doi.org/10.1016/j.neuropharm.2014.01.045

    Article  CAS  PubMed  Google Scholar 

  80. Geraghty NJ, Belfiore L, Ly D, Adhikary SR, Fuller SJ, Varikatt W, Sanderson-Smith ML, Sluyter V, Alexander SI, Sluyter R, Watson D (2017) The P2X7 receptor antagonist Brilliant Blue G reduces serum human interferon-γ in a humanized mouse model of graft-versus-host disease, (in eng). Clin Exp Immunol 190(1):79–95. https://doi.org/10.1111/cei.13005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Aricioglu F, Ozkartal CS, Bastaskin T, Tüzün E, Kandemir C, Sirvanci S, Kucukali CI, Utkan T (2019) Antidepressant-like effects induced by chronic blockade of the purinergic 2X7 receptor through inhibition of non-like receptor protein 1 inflammasome in chronic unpredictable mild stress model of depression in rats, (in eng). Clin Psychopharmacol Neurosci 17(2):261–272. https://doi.org/10.9758/cpn.2019.17.2.261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. North RA (2002) Molecular physiology of P2X receptors. Phys Rev 82(4):1013–1067. https://doi.org/10.1152/physrev.00015.2002

    Article  CAS  Google Scholar 

  83. Humphreys BD, Virginio C, Surprenant A, Rice J, Dubyak GR (1998) Isoquinolines as antagonists of the P2X7 nucleotide receptor: high selectivity for the human versus rat receptor homologues. Mol Pharmacol 54(1):22. https://doi.org/10.1124/mol.54.1.22

    Article  CAS  PubMed  Google Scholar 

  84. Gargett CE, Wiley JS (1997) The isoquinoline derivative KN-62 a potent antagonist of the P2Z-receptor of human lymphocytes, (in eng). Br J Pharmacol 120(8):1483–1490. https://doi.org/10.1038/sj.bjp.0701081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Watano T, Matsuoka I, Kimura J (2002) Characteristics of ATP-induced current through P2X7 receptor in NG108-15 cells: unique antagonist sensitivity and lack of pore formation. Japanese J Pharmacol 88(4):428–435. https://doi.org/10.1254/jjp.88.428

    Article  CAS  Google Scholar 

  86. Mortimer L, Moreau F, Cornick S, Chadee K (2015) The NLRP3 inflammasome is a pathogen sensor for invasive entamoeba histolytica via activation of α5β1 integrin at the macrophage-amebae intercellular junction, (in eng). PLoS Pathog 11(5):e1004887–e1004887. https://doi.org/10.1371/journal.ppat.1004887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xu X, Pocock GM, Sharma A, Peery SL, Fites JS, Felley L, Zarnowski R, Stewart D, Berthier E, Klein BS, Sherer NM, Gumperz JE (2016) Human iNKT cells promote protective inflammation by inducing oscillating purinergic signaling in monocyte-derived DCs, (in eng). Cell Rep 16(12):3273–3285. https://doi.org/10.1016/j.celrep.2016.08.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Choi JH, Ji YG, Ko JJ, Cho HJ, Lee DH (2018) Activating P2X7 receptors increases proliferation of human pancreatic cancer cells via ERK1/2 and JNK. Pancreas 47(5) https://journals.lww.com/pancreasjournal/Fulltext/2018/05000/Activating_P2X7_Receptors_Increases_Proliferation.19.aspx

  89. Jelassi B et al (2011) P2X7 receptor activation enhances SK3 channels- and cystein cathepsin-dependent cancer cells invasiveness. Oncogene 30(18):2108–2122. https://doi.org/10.1038/onc.2010.593

    Article  CAS  PubMed  Google Scholar 

  90. Pier Giovanni B, Di VF, Romeo R (2004) Agonists and antagonists acting at P2X7 receptor. Curr Top Med Chem 4(16):1707–1717. https://doi.org/10.2174/1568026043387223

    Article  Google Scholar 

  91. Honore P et al (2006) A-740003 [N-(1-{[(cyanoimino)(5-quinolinylamino) methyl]amino}-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide], a novel and selective P2X7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat. J Pharmacol Exp Ther 319(3):1376. https://doi.org/10.1124/jpet.106.111559

    Article  CAS  PubMed  Google Scholar 

  92. Nelson DW et al (2006) Structure−activity relationship studies on a series of novel, substituted 1-benzyl-5-phenyltetrazole P2X7 antagonists. J Med Chem 49(12):3659–3666. https://doi.org/10.1021/jm051202e

    Article  CAS  PubMed  Google Scholar 

  93. Karasawa A, Kawate T (2016) Structural basis for subtype-specific inhibition of the P2X7 receptor. eLife 5:e22153. https://doi.org/10.7554/eLife.22153

    Article  PubMed  PubMed Central  Google Scholar 

  94. Allsopp RC, Dayl S, Bin Dayel A, Schmid R, Evans RJ (2018) Mapping the allosteric action of antagonists A740003 and A438079 reveals a role for the left flipper in ligand sensitivity at P2X7 receptors, (in eng). Mol Pharmacol 93(5):553–562. https://doi.org/10.1124/mol.117.111021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Savio LEB, de Andrade Mello P, da Silva CG, Coutinho-Silva R (2018) The P2X7 receptor in inflammatory diseases: angel or demon?, (in English). Front Pharmacol, Review 9(52). https://doi.org/10.3389/fphar.2018.00052

  96. Janssen B et al (2014) Synthesis and initial preclinical evaluation of the P2X7 receptor antagonist [11C]A-740003 as a novel tracer of neuroinflammation. J Label Compd Radiopharm 57(8):509–516. https://doi.org/10.1002/jlcr.3206

    Article  CAS  Google Scholar 

  97. Khalafalla MG, Woods LT, Camden JM, Khan AA, Limesand KH, Petris MJ, Erb L, Weisman GA (2017) P2X7 receptor antagonism prevents IL-1β release from salivary epithelial cells and reduces inflammation in a mouse model of autoimmune exocrinopathy, (in eng). J Biol Chem 292(40):16626–16637. https://doi.org/10.1074/jbc.M117.790741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. McGaraughty S et al (2007) P2X7-related modulation of pathological nociception in rats. Neuroscience 146(4):1817–1828. https://doi.org/10.1016/j.neuroscience.2007.03.035

    Article  CAS  PubMed  Google Scholar 

  99. Abdi MH et al (2010) Discovery and structure–activity relationships of a series of pyroglutamic acid amide antagonists of the P2X7 receptor. Bioorg Med Chem Lett 20(17):5080–5084. https://doi.org/10.1016/j.bmcl.2010.07.033

    Article  CAS  PubMed  Google Scholar 

  100. Ali Z, Laurijssens B, Ostenfeld T, McHugh S, Stylianou A, Scott-Stevens P, Hosking L, Dewit O, Richardson JC, Chen C (2013) Pharmacokinetic and pharmacodynamic profiling of a P2X7 receptor allosteric modulator GSK1482160 in healthy human subjects, (in eng). Br J Clin Pharmacol 75(1):197–207. https://doi.org/10.1111/j.1365-2125.2012.04320.x

    Article  CAS  PubMed  Google Scholar 

  101. Territo PR et al (2017) Characterization of 11C-GSK1482160 for targeting the P2X7 receptor as a biomarker for neuroinflammation. J Nucl Med 58(3):458–465 http://jnm.snmjournals.org/content/58/3/458.abstract

    Article  CAS  Google Scholar 

  102. Stock TC et al (2012) Efficacy and safety of CE-224,535, an antagonist of P2X7 receptor, in treatment of patients with rheumatoid arthritis inadequately controlled by methotrexate. J Rheumatol 39(4):720. https://doi.org/10.3899/jrheum.110874

    Article  CAS  PubMed  Google Scholar 

  103. Duplantier AJ et al (2011) Optimization of the physicochemical and pharmacokinetic attributes in a 6-azauracil series of P2X7 receptor antagonists leading to the discovery of the clinical candidate CE-224,535. Bioorg Med Chem Lett 21(12):3708–3711. https://doi.org/10.1016/j.bmcl.2011.04.077

    Article  CAS  PubMed  Google Scholar 

  104. Bhattacharya A (2018) Recent advances in CNS P2X7 physiology and pharmacology: focus on neuropsychiatric disorders. Front Pharmacol 9:30. https://doi.org/10.3389/fphar.2018.00030https://www.frontiersin.org/article/10.3389/fphar.2018.00030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bhattacharya A, Wang Q, Ao H, Shoblock JR, Lord B, Aluisio L, Fraser I, Nepomuceno D, Neff RA, Welty N, Lovenberg TW, Bonaventure P, Wickenden AD, Letavic MA (2013) Pharmacological characterization of a novel centrally permeable P2X7 receptor antagonist: JNJ-47965567, (in eng). Br J Pharmacol 170(3):624–640. https://doi.org/10.1111/bph.12314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lord B et al (2014) Pharmacology of a novel central nervous system–penetrant P2X7 antagonist JNJ-42253432. J Pharmacol Exp Ther 351(3):628. https://doi.org/10.1124/jpet.114.218487

    Article  CAS  PubMed  Google Scholar 

  107. Letavic MA et al (2017) 4-Methyl-6,7-dihydro-4H-triazolo[4,5-c]pyridine-based P2X7 receptor antagonists: optimization of pharmacokinetic properties leading to the identification of a clinical candidate. J Med Chem 60(11):4559–4572. https://doi.org/10.1021/acs.jmedchem.7b00408

    Article  CAS  PubMed  Google Scholar 

  108. ClinicalTrials.gov. Antidepressant trial with P2X7 antagonist JNJ-54175446 (ATP) NCT04116606 [Online] Available: https://clinicaltrials.gov/ct2/show/NCT04116606?id=NCT04116606&draw=2&rank=1&load=cart

  109. Chrovian CC et al (2018) A dipolar cycloaddition reaction to access 6-methyl-4,5,6,7-tetrahydro-1H-[1,2,3]triazolo[4,5-c]pyridines enables the discovery synthesis and preclinical profiling of a P2X7 antagonist clinical candidate. J Med Chem 61(1):207–223. https://doi.org/10.1021/acs.jmedchem.7b01279

    Article  CAS  PubMed  Google Scholar 

  110. ClinicalTrials.gov. A study to investigate the safety, tolerability, and pharmacokinetics of JNJ-55308942 in healthy male and female participants NCT03151486 [Online] Available: https://clinicaltrials.gov/ct2/show/results/NCT03151486

  111. Allsopp RC, Dayl S, Schmid R, Evans RJ (2017) Unique residues in the ATP gated human P2X7 receptor define a novel allosteric binding pocket for the selective antagonist AZ10606120. Sci Rep 7(1):725. https://doi.org/10.1038/s41598-017-00732-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fischer W, Urban N, Immig K, Franke H, Schaefer M (2014) Natural compounds with P2X7 receptor-modulating properties, (in eng). Purinergic Signal 10(2):313–326. https://doi.org/10.1007/s11302-013-9392-1

    Article  CAS  PubMed  Google Scholar 

  113. Liu L, Zou J, Liu X, Jiang L-H, Li J (2010) Inhibition of ATP-induced macrophage death by emodin via antagonizing P2X7 receptor. Eur J Pharmacol 640(1):15–19. https://doi.org/10.1016/j.ejphar.2010.04.036

    Article  CAS  PubMed  Google Scholar 

  114. Hu F et al (2015) Rhein antagonizes P2X7 receptor in rat peritoneal macrophages. Sci Rep 5(1):14012. https://doi.org/10.1038/srep14012

    Article  PubMed  PubMed Central  Google Scholar 

  115. Wang H, Yang D, Li L, Yang S, Du G, Lu Y (2020) Anti-inflammatory effects and mechanisms of rhein, an anthraquinone compound, and its applications in treating arthritis: a review, (in eng). Nat Prod Bioprospect 10(6):445–452. https://doi.org/10.1007/s13659-020-00272-y

    Article  PubMed  PubMed Central  Google Scholar 

  116. Nuka E, Ohnishi K, Terao J, Kawai Y (2018) ATP/P2X7 receptor signaling as a potential anti-inflammatory target of natural polyphenols. PLoS One 13(9):e0204229. https://doi.org/10.1371/journal.pone.0204229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jelassi B, Anchelin M, Chamouton J, Cayuela ML, Clarysse L, Li J, Goré J, Jiang LH, Roger S (2013) Anthraquinone emodin inhibits human cancer cell invasiveness by antagonizing P2X7 receptors. Carcinogenesis 34(7):1487–1496. https://doi.org/10.1093/carcin/bgt099

    Article  CAS  PubMed  Google Scholar 

Download references

Availability of data and material

Not applicable.

Code availability

Not applicable.

Funding

Prof. Terence J. O’Brien receives research funding from Biogen, UCB Pharma, Eisai Pharma, Anavex Pharmaceuticals, and Zynerba Pharmaceuticals and serves on the scientific advisory boards for UCB Pharma, Eisai Pharmaceuticals, Zynerba Pharmaceuticals, ES Therapeutics, and Seqirus Pharmaceuticals.

Dr. Mastura Monif has received funding for speaker engagements and advisory board service from Merck and Biogen. Her institution receives funding from Merck. Her institution also receives funding from MS Research Australia, Brain Foundation (Australia), Charles and Sylvia Viertel Foundation (Australia), Bethlehem and Griffith Foundation (Australia), and National Health and Medical Research Council (NHMRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mastura Monif.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drill, M., Jones, N.C., Hunn, M. et al. Antagonism of the ATP-gated P2X7 receptor: a potential therapeutic strategy for cancer. Purinergic Signalling 17, 215–227 (2021). https://doi.org/10.1007/s11302-021-09776-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-021-09776-9

Keywords

Navigation