Skip to main content
Log in

The origin of correlations in metabolomics data

  • Published:
Metabolomics Aims and scope Submit manuscript

A phenomenon observed earlier in the development of metabolomics as a systems biology methodology, consists of a small but significant number of metabolites whose levels are highly correlated between biological replicates. Contrary to initial interpretations, these correlations are not necessarily only between neighboring metabolites in the metabolic network. Most metabolites that participate in common reactions are not correlated in this way, while some non-neighboring metabolites are highly correlated. Here we investigate the origin of such correlations using metabolic control analysis and computer simulation of biochemical networks. A series of cases is identified which lead to high correlation between metabolite pairs in replicate measurement. These are (1) chemical equilibrium, (2) mass conservation, (3) asymmetric control distribution, and (4) unusually high variance in the expression of a single gene. The importance of identifying metabolite correlations within a physiological state and changes of correlation between different states is discussed in the context of systems biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • D.E. Atkinson (1977) Cellular Energy Metabolism and its Regulation Academic Press New York

    Google Scholar 

  • B.R. Baggett J.D. Cooper E.T. Hogan J. Carper N.L. Paiva J.T. Smith (2002) ArticleTitleProfiling isoflavonoids found in legume root extracts using capillary electrophoresis Electrophoresis 23 1642–1651

    Google Scholar 

  • Broeckling, C.D., Huhman, D.V., Farag, M.et al. (2004). Metabolic profiling of Medicago truncatula cell cultures reveals effects of biotic and abiotic elicitors on metabolism. J. Exp. Bot. in press.

  • S. Cho S.G. Park H. Lee do B.C. Park (2004) ArticleTitleProtein-protein interaction networks: from interactions to networks J. Biochem. Mol. Biol. 37 45–52

    Google Scholar 

  • D.A. Fell (1996) Understanding the Control of Metabolism. Portland Press London

    Google Scholar 

  • O. Fiehn (2001) ArticleTitleCombining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks Comp. Funct. Genom. 2 155–168

    Google Scholar 

  • O. Fiehn (2003) ArticleTitleMetabolic networks of Cucurbita maxima phloem Phytochemistry 62 875–886

    Google Scholar 

  • G.G. Harrigan R.H. LaPlante G.N. Cosma et al. (2004) ArticleTitleApplication of high-throughput Fourier-transform infrared spectroscopy in toxicology studies: contribution to a study on the development of an animal model for idiosyncratic toxicity Toxicol. Lett. 146 197–205

    Google Scholar 

  • K. Hayashi N. Sakamoto (1986) Dynamic Analysis of Enzyme Systems. An Introduction. Springer-Verlag Berlin

    Google Scholar 

  • R. Heinrich T.A. Rapoport (1974) ArticleTitleA linear steady-state treatment of enzymatic chains. General properties, control and effector strength Eur. J. Biochem. 42 89–95

    Google Scholar 

  • R. Heinrich S. Schuster (1996) The Regulation of Cellular Systems. Chapman & Hall New York

    Google Scholar 

  • J.H. Hofmeyr A. Cornish-Bowden (1996) ArticleTitleCo-response analysis: a new experimental strategy for metabolic control analysis J. Theor. Biol. 182 371–380

    Google Scholar 

  • J.H.S. Hofmeyr A. Cornish-Bowden J.M. Rohwer (1993) ArticleTitleTaking enzyme kinetics out of control – putting control into regulation Eur. J. Biochem. 212 833–837

    Google Scholar 

  • J.H. Hofmeyr H. Kacser K.J. van der Merwe (1986) ArticleTitleMetabolic control analysis of moiety-conserved cycles Eur. J. Biochem. 155 631–641

    Google Scholar 

  • M. Hucka A. Finney H.M. Sauro et al. (2003) ArticleTitleThe systems biology markup language (SBML) a medium for representation and exchange of biochemical network models. Bioinformatics 19 524–531

    Google Scholar 

  • J. Janin B. Seraphin (2003) ArticleTitleGenome-wide studies of protein-protein interaction Curr. Opin. Struct. Biol. 13 383–388

    Google Scholar 

  • H. Kacser J.A. Burns (1973) ArticleTitleThe control of flux Symp. Soc. Exp. Biol. 27 65–104

    Google Scholar 

  • H. Kacser J.A. Burns (1981) ArticleTitleThe molecular basis of dominance Genetics 97 639–666

    Google Scholar 

  • D.B. Kell (2002) ArticleTitleMetabolomics and machine learning: explanatory analysis of complex metabolome data using genetic programming to produce simple, robust rules Mol. Biol. Rep. 29 237–241

    Google Scholar 

  • H. Kitano (2002) ArticleTitleComputational systems biology Nature 420 206–210

    Google Scholar 

  • F. Kose W. Weckwerth T. Linke O. Fiehn (2001) ArticleTitleVisualizing plant metabolomic correlation networks using clique-metabolite matrices Bioinformatics 17 1198–1208

    Google Scholar 

  • M. Liang A.W. Cowley A.S. Greene (2004) ArticleTitleHigh throughput gene expression profiling: a molecular approach to integrative physiology J. Physiol. 554 22–30

    Google Scholar 

  • Martins, A.M., Camacho, D., Shuman, J., Sha, W., Mendes, P. and Shulaev, V. (2004) A systems biology study of two distinct growth phases of Saccharomyces cerevisiae cultures. Curr. Genomics. in press

  • P. Mendes (1993) ArticleTitleGEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems Comput. Appl. Biosci. 9 563–571

    Google Scholar 

  • P. Mendes (1997) ArticleTitleBiochemistry by numbers: simulation of biochemical pathways with Gepasi 3 Trends Biochem. Sci. 22 361–363

    Google Scholar 

  • J.K. Nicholson J.C. Lindon E. Holmes (1999) ArticleTitle‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data Xenobiotica 29 1181–1189

    Google Scholar 

  • S.G. Oliver M.K. Winson D.B. Kell F. Baganz (1998) ArticleTitleSystematic functional analysis of the yeast genome Trends Biotechnol. 16 373–378

    Google Scholar 

  • K.H. Ott N. Aranibar B. Singh G.W. Stockton (2003) ArticleTitleMetabonomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts Phytochemistry 62 971–985

    Google Scholar 

  • L. Pritchard D.B. Kell (2002) ArticleTitleSchemes of flux control in a model of Saccharomyces cerevisiae glycolysis Eur. J. Biochem. 269 3894–3904

    Google Scholar 

  • L.M. Raamsdonk B. Teusink D. Broadhurst et al. (2001) ArticleTitleA functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations Nature Biotechnol. 19 45–50

    Google Scholar 

  • N.V. Reo (2002) ArticleTitleNMR-based metabolomics Drugs Chem. Toxicol. 25 375–382

    Google Scholar 

  • P.G. Righetti N. Campostrini J. Pascali M. Hamdan H. Astner (2004) ArticleTitleQuantitative proteomics: a review of different methodologies Eur. J. Mass Spectrom. 10 335–348

    Google Scholar 

  • U. Roessner A. Luedemann D. Brust et al. (2001) ArticleTitleMetabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems Plant Cell 13 11–29

    Google Scholar 

  • U. Roessner C. Wagner J. Kopka R.N. Trethewey L. Willmitzer (2000) ArticleTitleTechnical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography–mass spectrometry Plant J. 23 131–142

    Google Scholar 

  • M.A. Savageau (1976) Biochemical Systems Analysis. Addison-Wesley, Reading MA

    Google Scholar 

  • C.H. Schilling S. Schuster B.O. Palsson R. Heinrich (1999) ArticleTitleMetabolic pathway analysis: basic concepts and scientific applications in the post-genomic era Biotechnol. Prog. 15 296–303

    Google Scholar 

  • T. Soga Y. Ueno H. Naraoka Y. Ohashi M. Tomita T. Nishioka (2002) ArticleTitleSimultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry Anal. Chem. 74 2233–2239

    Google Scholar 

  • R. Steuer J. Kurths O. Fiehn W. Weckwerth (2003) ArticleTitleObserving and interpreting correlations in metabolomic networks Bioinformatics 19 1019–1026

    Google Scholar 

  • L.W. Sumner P. Mendes R.A. Dixon (2003) ArticleTitlePlant metabolomics: large-scale phytochemistry in the functional genomics era Phytochem. 62 817–836

    Google Scholar 

  • B. Teusink F. Baganz H.V. Westerhoff S.G. Oliver (1998) ArticleTitleMetabolic control analysis as a tool in the elucidation of the function of novel genes Meth. Microbiol. 26 297–336

    Google Scholar 

  • B. Teusink J. Passarge C.A. Reijenga et al. (2000) ArticleTitleCan yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry Eur. J. Biochem. 267 5313–5329

    Google Scholar 

  • V.V. Tolstikov A. Lommen K. Nakanishi N. Tanaka O. Fiehn (2003) ArticleTitleMonolithic silica-based capillary reversed-phase liquid chromatography/electrospray mass spectrometry for plant metabolomics Anal. Chem. 75 6737–6740

    Google Scholar 

  • W. Weckwerth O. Fiehn (2002) ArticleTitleCan we discover novel pathways using metabolomic analysis Curr. Opin. Biotechnol. 13 156–160

    Google Scholar 

  • W. Weckwerth M.E. Loureiro K. Wenzel O. Fiehn (2004) ArticleTitleDifferential metabolic networks unravel the effects of silent plant phenotypes Proc. Natl. Acad. Sci. USA 101 7809–7814

    Google Scholar 

  • H.V. Westerhoff Y.-D. Chen (1984) ArticleTitleHow do enzyme activities control metabolite concentrations? An additional theorem in the theory of metabolic control Eur. J. Biochem. 142 425–430

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Mendes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camacho, D., de la Fuente, A. & Mendes, P. The origin of correlations in metabolomics data. Metabolomics 1, 53–63 (2005). https://doi.org/10.1007/s11306-005-1107-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-005-1107-3

Key words

Navigation