Skip to main content
Log in

Environmental metabolomics: a critical review and future perspectives

  • Orignal Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Environmental metabolomics is the application of metabolomics to characterise the interactions of organisms with their environment. This approach has many advantages for studying organism–environment interactions and for assessing organism function and health at the molecular level. As such, metabolomics is finding an increasing number of applications in the environmental sciences, ranging from understanding organismal responses to abiotic pressures, to investigating the responses of organisms to other biota. These interactions can be studied from individuals to populations, which can be related to the traditional fields of ecophysiology and ecology, and from instantaneous effects to those over evolutionary time scales, the latter enabling studies of genetic adaptation. This review provides a comprehensive and current overview of environmental metabolomics research. We begin with an overview of metabolomic studies into the effects of abiotic pressures on organisms. In the field of ecophysiology, studies on the metabolic responses to temperature, water, food availability, light and circadian rhythms, atmospheric gases and season are reviewed. A section on ecotoxicogenomics discusses research in aquatic and terrestrial ecotoxicology, assessing organismal responses to anthropogenic pollutants in both the laboratory and field. We then discuss environmental metabolomic studies of diseases and biotic–biotic interactions, in particular herbivory. Finally, we critically evaluate the contribution that metabolomics has made to the environmental sciences, and highlight and discuss recommendations to advance our understanding of the environment, ecology and evolution using a metabolomics approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ankley, G. T., Miracle, A., Perkins, E. J., & Daston, G. P. (2008). Genomics in regulatory ecotoxicology: Applications and challenges. London: CRC.

    Google Scholar 

  • Arany, A. M., de Jong, T. J., Kim, H. K., van Dam, N. M., Choi, Y. H., Verpoorte, R., et al. (2008). Glucosinolates and other metabolites in the leaves of Arabidopsis thaliana from natural populations and their effects on a generalist and a specialist herbivore. Chemoecology, 18, 65–71. doi:10.1007/s00049-007-0394-8.

    Article  CAS  Google Scholar 

  • Arany, A. M., de Jong, T. J., & van der Meijden, E. (2005). Herbivory and abiotic factors affect population dynamics of Arabidopsis thaliana in a sand dune area. Plant Biology, 7, 549–555. doi:10.1055/s-2005-865831.

    Article  PubMed  Google Scholar 

  • Atherton, H. J., Jones, O. A. H., Malik, S., Miska, E. A., & Griffin, J. L. (2008). A comparative metabolomic study of NHR-49 in Caenorhabditis elegans and PPAR-alpha in the mouse. FEBS Letters, 582, 1661–1666. doi:10.1016/j.febslet.2008.04.020.

    Article  PubMed  CAS  Google Scholar 

  • Blaise, B. J., Giacomotto, J., Elena, B., Dumas, M. E., Toullhoat, P., Segalat, L., et al. (2007). Metabotyping of Caenorhabditis elegans reveals latent phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 104, 19808–19812. doi:10.1073/pnas.0707393104.

    Article  PubMed  CAS  Google Scholar 

  • Bon, D., Gilard, V., Massou, S., Peres, G., Malet-Martino, M., Martino, R., et al. (2006). In vivo 31P and 1H HR-MAS NMR spectroscopy analysis of the unstarved Aporrectodea caliginosa (Lumbricidae). Biology and Fertility of Soils, 43, 191–198. doi:10.1007/s00374-006-0092-7.

    Article  CAS  Google Scholar 

  • Broeckling, C. D., Huhman, D. V., Farag, M. A., Smith, J. T., May, G. D., Mendes, P., et al. (2005). Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. Journal of Experimental Botany, 56, 323–336. doi:10.1093/jxb/eri058.

    Article  PubMed  CAS  Google Scholar 

  • Browse, J., & Lange, B. M. (2004). Counting the cost of a cold-blooded life: Metabolomics of cold acclimation. Proceedings of the National Academy of Sciences of the United States of America, 101, 14996–14997. doi:10.1073/pnas.0406389101.

    Article  PubMed  CAS  Google Scholar 

  • Bundy, J. G., Keun, H. C., Sidhu, J. K., Spurgeon, D. J., Svendsen, C., Kille, P., et al. (2007). Metabolic profile biomarkers of metal contamination in a sentinel terrestrial species are applicable across multiple sites. Environmental Science and Technology, 41, 4458–4464. doi:10.1021/es0700303.

    Article  PubMed  CAS  Google Scholar 

  • Bundy, J. G., Lenz, E. M., Bailey, N. J., Gavaghan, C. L., Svendsen, C., Spurgeon, D., et al. (2002a). Metabonomic assessment of toxicity of 4-fluoroaniline, 3, 5-difluoroaniline and 2-fluoro-4-methylaniline to the earthworm Eisenia veneta (Rosa): Identification of new endogenous biomarkers. Environmental Toxicology and Chemistry, 21, 1966–1972. doi:10.1897/1551-5028(2002)021<1966:MAOTOF>2.0.CO;2.

    Article  PubMed  CAS  Google Scholar 

  • Bundy, J. G., Osborn, D., Weeks, J. M., Lindon, J. C., & Nicholson, J. K. (2001). An NMR-based metabonomic approach to the investigation of coelomic fluid biochemistry in earthworms under toxic stress. FEBS Letters, 500, 31–35. doi:10.1016/S0014-5793(01)02582-0.

    Article  PubMed  CAS  Google Scholar 

  • Bundy, J. G., Ramlov, H., & Holmstrup, M. (2003). Multivariate metabolic profiling using 1H nuclear magnetic resonance spectroscopy of freeze-tolerant and freeze-intolerant earthworms exposed to frost. Cryo Letters, 24, 347–358.

    PubMed  CAS  Google Scholar 

  • Bundy, J. G., Sidhu, J. K., Rana, F., Spurgeon, D. J., Svendsen, C., Wren, J. F., et al. (2008). ‘Systems toxicology’ approach identifies coordinated metabolic responses to copper in a terrestrial non-model invertebrate, the earthworm Lumbricus rubellus. BMC Biology, 6, 25. doi:10.1186/1741-7007-6-25.

    Article  PubMed  CAS  Google Scholar 

  • Bundy, J. G., Spurgeon, D. J., Svendsen, C., Hankard, P. K., Osborn, D., Lindon, J. C., et al. (2002b). Earthworm species of the genus Eisenia can be phenotypically differentiated by metabolic profiling. FEBS Letters, 521, 115–120. doi:10.1016/S0014-5793(02)02854-5.

    Article  PubMed  CAS  Google Scholar 

  • Bundy, J. G., Spurgeon, D. J., Svendsen, C., Hankard, P. K., Weeks, J. M., Osborn, D., et al. (2004). Environmental metabonomics: Applying combination biomarker analysis in earthworms at a metal contaminated site. Ecotoxicology (London, England), 13, 797–806. doi:10.1007/s10646-003-4477-1.

    CAS  Google Scholar 

  • Bussell, J. A., Gidman, E. A., Causton, D. R., Gwynn-Jones, D., Malham, S. K., Jones, M. L. M., et al. (2008). Changes in the immune response and metabolic fingerprint of the mussel, Mytilus edulis (Linnaeus) in response to lowered salinity and physical stress. Journal of Experimental Marine Biology and Ecology, 358, 78–85. doi:10.1016/j.jembe.2008.01.018.

    Article  Google Scholar 

  • Cao, M., Koulman, A., Johnson, L. J., Lane, G. A., & Rasmussen, S. (2008). Advanced data-mining strategies for the analysis of direct-infusion ion trap mass spectrometry data from the association of perennial ryegrass with its endophytic fungus, Neotyphodium lolii. Plant Physiology, 146, 1501–1514. doi:10.1104/pp.107.112458.

    Article  PubMed  CAS  Google Scholar 

  • Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought—from genes to the whole plant. Functional Plant Biology, 30, 239–264. doi:10.1071/FP02076.

    Article  CAS  Google Scholar 

  • Cho, K., Shibato, J., Agrawal, G. K., Jung, Y., Kubo, A., Jwa, N., et al. (2008). Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedling. Journal of Proteome Research, 7, 2980–2998. doi:10.1021/pr800128q.

    Article  PubMed  CAS  Google Scholar 

  • Clegg, J. S. (2001). Cryptobiosis—a peculiar state of biological organization. Comparative Biochemistry and Physiology. B, Comparative Biochemistry, 128, 613–624. doi:10.1016/S1096-4959(01)00300-1.

    Article  CAS  Google Scholar 

  • Coen, M., Holmes, E., Lindon, J. C., & Nicholson, J. K. (2008). NMR-based metabolic profiling and metabonomic approaches to problems in molecular toxicology. Chemical Research in Toxicology, 21, 9–27. doi:10.1021/tx700335d.

    Article  PubMed  CAS  Google Scholar 

  • Cook, D., Fowler, S., Fiehn, O., & Thomashow, M. F. (2004). A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 101, 15243–15248. doi:10.1073/pnas.0406069101.

    Article  PubMed  CAS  Google Scholar 

  • D’Auria, J. C., & Gershenzon, J. (2005). The secondary metabolism of Arabidopsis thaliana: Growing like a weed. Current Opinion in Plant Biology, 8, 308–316. doi:10.1016/j.pbi.2005.03.012.

    Article  PubMed  CAS  Google Scholar 

  • Darwin, C. (1881). The formation of vegetable mould, through the action of worms, with observations on their habits. London: Murray.

  • Davey, M. P., Bryant, D. N., Cummins, I., Ashenden, T. W., Gates, P., Baxter, R., et al. (2004). Effects of elevated CO2 on the vasculature and phenolic secondary metabolism of Plantago maritima. Phytochemistry, 65, 2197–2204. doi:10.1016/j.phytochem.2004.06.016.

    Article  PubMed  CAS  Google Scholar 

  • Davey, M. P., Burrell, M. M., Woodward, F. I., & Quick, W. P. (2008). Population-specific metabolic phenotypes of Arabidopsis lyrata ssp. petraea. New Phytologist, 177(2), 380–388.

    PubMed  CAS  Google Scholar 

  • Davey, M. P., Harmens, H., Ashenden, T. W., Edwards, R., & Baxter, R. (2007). Species-specific effects of elevated CO2 on resource allocation in Plantago maritima and Armeria maritima. Biochemical Systematics and Ecology, 35, 121–129. doi:10.1016/j.bse.2006.09.004.

    Article  CAS  Google Scholar 

  • Davey, M. P., Woodward, F. I., & Quick, W. P. (in press). Intraspecific variation in cold-temperature metabolic phenotypes of Arabidopsis lyrata ssp. petraea. Metabolomics, 5(1). doi:10.1007/s11306-008-0127-1.

  • Day, T. A., Ruhland, C. T., & Xiong, F. S. (2001). Influence of solar ultraviolet-B radiation on Antarctic terrestrial plants: Results from a 4-year field study. Journal of Photochemistry and Photobiology B: Biology, 62, 78–87. doi:10.1016/S1011-1344(01)00161-0.

    Article  CAS  Google Scholar 

  • Desbrosses, G. G., Kopka, J., & Udvardi, M. K. (2005). Lotus japonicus metabolic profiling. Development of gas chromatography-mass spectrometry resources for the study of plant–microbe interactions. Plant Physiology, 137, 1302–1318. doi:10.1104/pp.104.054957.

    Article  PubMed  CAS  Google Scholar 

  • Ekman, D. R., Teng, Q., Villeneuve, D. L., Kahl, M. D., Jensen, K. M., Durhan, E. J., et al. (2008). Investigating compensation and recovery of fathead minnow (Pimephales promelas) exposed to 17 alpha-ethynylestradiol with metabolite profiling. Environmental Science and Technology, 42, 4188–4194. doi:10.1021/es8000618.

    Article  PubMed  CAS  Google Scholar 

  • Falk, M. J., Zhang, Z., Rosenjack, J. R., Nissim, I., Daikhin, E., Nissim, I., et al. (2008). Metabolic pathway profiling of mitochondrial respiratory chain mutants in C. elegans. Molecular Genetics and Metabolism, 93, 388–397.

    Article  PubMed  CAS  Google Scholar 

  • Gagneul, D., Ainouche, A., Duhaze, C., Lugan, R., Larher, F. R., & Bouchereau, A. (2007). A reassessment of the function of the so-called compatible solutes in the halophytic Plumbaginaceae Limonium latifolium. Plant Physiology, 144, 1598–1611. doi:10.1104/pp.107.099820.

    Article  PubMed  CAS  Google Scholar 

  • Gibb, J. O. T., Svendsen, C., Weeks, J. M., & Nicholson, J. K. (1997). 1H NMR spectroscopic investigations of tissue metabolite biomarker response to Cu(II) exposure in terrestrial invertebrates: Identification of free histidine as a novel biomarker of exposure to copper in earthworms. Biomarkers, 2, 295–302. doi:10.1080/135475097231526.

    Article  CAS  Google Scholar 

  • Gidman, E., Goodacre, R., Emmett, B., Sheppard, L., Leith, I., & Gwynn-Jones, D. (2004). Applying metabolic fingerprinting to ecology: The use of fourier-transform infrared spectroscopy for the rapid screening of plant responses to N deposition. Water, Air, and Soil Pollution, 4, 251–258. doi:10.1007/s11267-004-3035-z.

    Article  CAS  Google Scholar 

  • Gidman, E. A., Jones, M. L. M., Bussell, J. A., Malham, S. K., Reynolds, B., Seed, R., et al. (2007). A methodology for screening haemolymph of intertidal mussels, Mytilus edulis, using FT-IR spectroscopy as a tool for environmental assessment. Metabolomics, 3, 465–473. doi:10.1007/s11306-007-0060-8.

    Article  CAS  Google Scholar 

  • Gidman, E. A., Royston, G., Emmett, B., Wilson, D. B., Carroll, J. A., Caporn, S. J. M., et al. (2005). Metabolic fingerprinting for bio-indication of nitrogen responses in Calluna vulgaris heath communities. Metabolomics, 1, 1573–3882. doi:10.1007/s11306-005-0004-0.

    Article  CAS  Google Scholar 

  • Gidman, E. A., Stevens, C. J., Goodacre, R., Broadhurst, D., Emmett, B., & Gwynn-Jones, D. (2006). Using metabolic fingerprinting of plants for evaluating nitrogen deposition impacts on the landscape level. Global Change Biology, 12, 1460–1465. doi:10.1111/j.1365-2486.2006.01190.x.

    Article  Google Scholar 

  • Glass, D. J., & Hall, N. (2008). A brief history of the hypothesis. Cell, 134, 378–381. doi:10.1016/j.cell.2008.07.033.

    Article  PubMed  CAS  Google Scholar 

  • Gong, P., Guan, X., Inouye, L. S., Pirooznia, M., Indest, K. J., Athow, R. S., et al. (2007). Toxicogenomic analysis provides new insights into molecular mechanisms of the sublethal toxicity of 2, 4, 6-trinitrotoluene in Eisenia fetida. Environmental Science and Technology, 41, 8195–8202. doi:10.1021/es0716352.

    Article  PubMed  CAS  Google Scholar 

  • Goodacre, R., York, E. V., Heald, J. K., & Scott, I. M. (2003). Chemometric discrimination of unfractionated plant extracts analyzed by electrospray mass spectrometry. Phytochemistry, 62, 859–863. doi:10.1016/S0031-9422(02)00718-5.

    Article  PubMed  CAS  Google Scholar 

  • Gray, G. R., & Heath, D. (2005). A global reorganization of the metabolome in Arabidopsis during cold acclimation is revealed by metabolic fingerprinting. Physiologia Plantarum, 124, 236–248. doi:10.1111/j.1399-3054.2005.00507.x.

    Article  CAS  Google Scholar 

  • Griffin, J. L., Walker, L. A., Garrod, S., Holmes, E., Shore, R. F., & Nicholson, J. K. (2000a). NMR spectroscopy based metabonomic studies on the comparative biochemistry of the kidney and urine of the bank vole (Clethrionomys glareolus), wood mouse (Apodemus sylvaticus), white toothed shrew (Crocidura suaveolens) and the laboratory rat. Comparative Biochemistry and Physiology. B, Comparative Biochemistry, 127, 357–367. doi:10.1016/S0305-0491(00)00276-5.

    Article  CAS  Google Scholar 

  • Griffin, J. L., Walker, L. A., Shore, R. F., & Nicholson, J. K. (2001). High-resolution magic angle spinning 1H NMR spectroscopy studies on the renal biochemistry in the bank vole (Clethrionomys glareolus) and the effects of arsenic (As3+) toxicity. Xenobiotica, 31, 377–385. doi:10.1080/00498250110055938.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, J. L., Walker, L. A., Troke, J., Osborn, D., Shore, R. F., & Nicholson, J. K. (2000b). The initial pathogenesis of cadmium induced renal toxicity. FEBS Letters, 478, 147–150. doi:10.1016/S0014-5793(00)01843-3.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths, W. (2007). Metabolomics, metabonomics and metabolite profiling. Cambridge: Royal Society of Chemistry.

    Book  Google Scholar 

  • Guy, C., Kaplan, F., Kopka, J., Selbig, J., & Hincha, D. K. (2008). Metabolomics of temperature stress. Physiologia Plantarum, 132, 220–235.

    PubMed  CAS  Google Scholar 

  • Hannah, M. A., Wiese, D., Freund, S., Fiehn, O., Heyer, A. G., & Hincha, D. K. (2006). Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiology, 142, 98–112. doi:10.1104/pp.106.081141.

    Article  PubMed  CAS  Google Scholar 

  • Harrigan, G. G., & Goodacre, R. (2003). Metabolic profiling: Its role in biomarker discovery and gene function analysis. Boston: Springer.

    Google Scholar 

  • Hawes, T. C., Hines, A., Viant, M. R., Bale, J. S., Worland, M. R., & Convey, P. (2008). Metabolomic fingerprint of cryo-stress in a freeze-tolerant insect. Cryo Letters, 29(6), 505–515.

    CAS  PubMed  Google Scholar 

  • Hernandez, G., Ramirez, M., Valdes-Lopez, O., Tesfaye, M., Graham, M. A., Czechowski, T., et al. (2007). Phosphorus stress in common bean: Root transcript and metabolic responses. Plant Physiology, 144, 752–767. doi:10.1104/pp.107.096958.

    Article  PubMed  CAS  Google Scholar 

  • Hines, A. (2008). The development and evaluation of NMR-based metabolomics as a tool for environmental monitoring using the common mussel, PhD thesis, University of Birmingham, UK.

  • Hines, A., Oladiran, G. S., Bignell, J. P., Stentiford, G. D., & Viant, M. R. (2007a). Direct sampling of organisms from the field and knowledge of their phenotype: Key recommendations for environmental metabolomics. Environmental Science and Technology, 41, 3375–3381. doi:10.1021/es062745w.

    Article  PubMed  CAS  Google Scholar 

  • Hines, A., Yeung, W. H., Craft, J., Brown, M., Kenned, J., Bignell, J., et al. (2007b). Comparison of histological, genetic, metabolomics, and lipid-based methods for sex determination in marine mussels. Analytical Biochemistry, 369, 175–186. doi:10.1016/j.ab.2007.06.008.

    Article  PubMed  CAS  Google Scholar 

  • Hirai, M. Y., Yano, M., Goodenowe, D. B., Kanaya, S., Kimura, T., Awazuhara, M., et al. (2004). Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 101, 10205–10210. doi:10.1073/pnas.0403218101.

    Article  PubMed  CAS  Google Scholar 

  • Hjalten, J., Lindau, A., Wennstrom, A., Blomberg, P., Witzell, J., Hurry, V., et al. (2007). Unintentional changes of defence traits in GM trees can influence plant–herbivore interactions. Basic and Applied Ecology, 8, 434–443. doi:10.1016/j.baae.2006.09.001.

    Article  Google Scholar 

  • Huang, C. Y., Roessner, U., Eickmeier, I., Genc, Y., Callahan, D. L., Shirley, N., et al. (2008). Metabolite profiling reveals distinct changes in carbon and nitrogen metabolism in phosphate-deficient barley plants (Hordeum vulgare L.). Plant and Cell Physiology, 49, 691–703. doi:10.1093/pcp/pcn044.

    Article  PubMed  CAS  Google Scholar 

  • Hurry, V., Strand, A., Furbank, R., & Stitt, M. (2000). The role of inorganic phosphate in the development of freezing tolerance and the acclimatization of photosynthesis to low temperature is revealed by the pho mutants of Arabidopsis thaliana. The Plant Journal, 24, 383–396. doi:10.1046/j.1365-313x.2000.00888.x.

    Article  PubMed  CAS  Google Scholar 

  • Jansen, M. A. K., Hectors, K., O’Brien, N. M., Guisez, Y., & Potters, G. (2008). Plant stress and human health: Do human consumers benefit from UV-B acclimated crops? Plant Science, 175, 449–458. doi:10.1016/j.plantsci.2008.04.010.

    Article  CAS  Google Scholar 

  • Jeong, M. L., Jiang, H. Y., Chen, H. S., Tsai, C. J., & Harding, S. A. (2004). Metabolic profiling of the sink-to-source transition in developing leaves of quaking aspen. Plant Physiology, 136, 3364–3375. doi:10.1104/pp.104.044776.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, H. E., Broadhurst, D., Goodacre, R., & Smith, A. R. (2003). Metabolic fingerprinting of salt-stressed tomatoes. Phytochemistry, 62, 919–928. doi:10.1016/S0031-9422(02)00722-7.

    Article  PubMed  CAS  Google Scholar 

  • Jones, O. A. H., Spurgeon, D. J., Svendsen, C., & Griffin, J. L. (2008). A metabolomics based approach to assessing the toxicity of the polyaromatic hydrocarbon pyrene to the earthworm Lumbricus rubellus. Chemosphere, 71, 601–609. doi:10.1016/j.chemosphere.2007.08.056.

    Article  PubMed  CAS  Google Scholar 

  • Jones, O. A. H., Walker, L. A., Nicholson, J. K., Shore, R. F., & Griffin, J. L. (2007). Cellular acidosis in rodents exposed to cadmium is caused by adaptation of the tissue rather than an early effect of toxicity. Comparative Biochemistry and Physiology D-Genomics & Proteomics, 2, 316–321. doi:10.1016/j.cbd.2007.06.003.

    Article  CAS  Google Scholar 

  • Kahvejian, A., Quackenbush, J., & Thompson, J. F. (2008). What would you do if you could sequence everything? Nature Biotechnology, 26, 1125–1133. doi:10.1038/nbt1494.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, F., Kopka, J., Haskell, D. W., Zhao, W., Schiller, K. C., Gatzke, N., et al. (2004). Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiology, 136, 4159–4168. doi:10.1104/pp.104.052142.

    Article  PubMed  CAS  Google Scholar 

  • Kell, D. B., & Oliver, S. G. (2004). Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. BioEssays, 26, 99–105. doi:10.1002/bies.10385.

    Article  PubMed  Google Scholar 

  • Kliebenstein, D. J. (2004). Secondary metabolites and plant/environment interactions: A view through Arabidopsis thaliana tinged glasses. Plant, Cell & Environment, 27, 675–684. doi:10.1111/j.1365-3040.2004.01180.x.

    Article  CAS  Google Scholar 

  • Kontunen-Soppela, S., Ossipov, V., Ossipova, S., & Oksanen, E. (2007). Shift in birch leaf metabolome and carbon allocation during long-term open-field ozone exposure. Global Change Biology, 13, 1053–1067. doi:10.1111/j.1365-2486.2007.01332.x.

    Article  Google Scholar 

  • Lee, R. E., & Denlinger, D. L. (1985). Cold tolerance in diapausing and non-diapausing stages of the flesh fly, Sarcophaga crassipalpis. Physiological Entomology, 10, 309–315. doi:10.1111/j.1365-3032.1985.tb00052.x.

    Article  Google Scholar 

  • Lenz, E. M., Hagele, B. F., Wilson, I. D., & Simpson, S. J. (2001). High resolution 1H NMR spectroscopic studies of the composition of the haemolymph of crowd- and solitary-reared nymphs of the desert locust, Schistocerca gregaria. Insect Biochemistry and Molecular Biology, 32, 51–56. doi:10.1016/S0965-1748(01)00078-9.

    Article  PubMed  CAS  Google Scholar 

  • Li, P. H., Sioson, A., Mane, S. P., Ulanov, A., Grothaus, G., Heath, L. S., et al. (2006). Response diversity of Arabidopsis thaliana ecotypes in elevated [CO2] in the field. Plant Molecular Biology, 62, 593–609. doi:10.1007/s11103-006-9041-y.

    Article  PubMed  CAS  Google Scholar 

  • Lin, C. Y., Viant, M. R., & Tjeerdema, R. S. (2006). Metabolomics: Methodologies and applications in the environmental sciences. Journal of Pesticide Science, 31, 245–251. doi:10.1584/jpestics.31.245.

    Article  CAS  Google Scholar 

  • Lindon, J. C., Nicholson, J. K., & Holmes, E. (2006). The handbook of metabonomics and metabolomics. London: Elsevier Science.

    Google Scholar 

  • Llusia, J., Penuelas, J., Alessio, G. A., & Estiarte, M. (2008). Contrasting species-specific, compound-specific, seasonal, and interannual responses of foliar isoprenoid emissions to experimental drought in a mediterranean shrubland. International Journal of Plant Sciences, 169, 637–645. doi:10.1086/533603.

    Article  CAS  Google Scholar 

  • Lois, R. (1994). Accumulation of UV-absorbing flavonoids induced by UV-B radiation in Arabidopsis thaliana.1. Mechanisms of UV-resistance in Arabidopsis. Planta, 194, 498–503. doi:10.1007/BF00714462.

    Article  CAS  Google Scholar 

  • Long, S. P., Ainsworth, E. A., Rogers, A., & Ort, D. R. (2004). Rising atmospheric carbon dioxide: Plants face the future. Annual Review of Plant Biology, 55, 591–628. doi:10.1146/annurev.arplant.55.031903.141610.

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie, D. A., Defernez, M., Dunn, W. B., Brown, M., Fuller, L. J., de Herrera, S., et al. (2008). Relatedness of medically important strains of Saccharomyces cerevisiae as revealed by phylogenetics and metabolomics. Yeast (Chichester, England), 25, 501–512. doi:10.1002/yea.1601.

    Article  CAS  Google Scholar 

  • Maharjan, R. P., & Ferenci, T. (2005). Metabolomic diversity in the species Escherichia coli and its relationship to genetic population structure. Metabolomics, 1, 235–242. doi:10.1007/s11306-005-0002-2.

    Article  CAS  Google Scholar 

  • Malmendal, A., Overgaard, J., Bundy, J. G., Sorensen, J. G., Nielsen, N. C., Loeschcke, V., et al. (2006). Metabolomic profiling of heat stress: Hardening and recovery of homeostasis in Drosophila. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 291, R205–R212. doi:10.1152/ajpregu.00867.2005.

    PubMed  CAS  Google Scholar 

  • McKelvie, J., Yuk, J., Xu, Y., Simpson, A., & Simpson, M. (in press). 1H NMR and GC/MS metabolomics of earthworm responses to sub-lethal DDT and endosulfan exposure. Metabolomics, 5(1). doi:10.1007/s11306-008-0122-6.

  • Michaud, M. R., Benoit, J. B., Lopez-Martinez, G., Elnitsky, M. A., Lee, R. E., & Denlinger, D. L. (2008). Metabolomics reveals unique and shared metabolic changes in response to heat shock, freezing and desiccation in the Antarctic midge, Belgica antarctica. Journal of Insect Physiology, 54, 645–655. doi:10.1016/j.jinsphys.2008.01.003.

    Article  CAS  Google Scholar 

  • Michaud, M. R., & Denlinger, D. L. (2007). Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis): A metabolomic comparison. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, 177, 753–763. doi:10.1007/s00360-007-0172-5.

    Article  PubMed  CAS  Google Scholar 

  • Miller, M. G. (2007). Environmental metabolomics: A SWOT analysis (strengths, weaknesses, opportunities, and threats). Journal of Proteome Research, 6, 540–545. doi:10.1021/pr060623x.

    Article  PubMed  CAS  Google Scholar 

  • Miller, G. A., Islam, M. S., Claridge, T. D. W., Dodgson, T., & Simpson, S. J. (2008). Swarm formation in the desert locust Schistocerca gregaria: Isolation and NMR analysis of the primary maternal gregarizing agent. The Journal of Experimental Biology, 211, 370–376. doi:10.1242/jeb.013458.

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410. doi:10.1016/S1360-1385(02)02312-9.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, A. J., Kille, P., & Sturzenbaum, S. R. (2007). Microevolution and ecotoxicology of metals in invertebrates. Environmental Science and Technology, 41, 1085–1096. doi:10.1021/es061992x.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, N., Bearden, D., Bundy, J. G., Collette, T., Currie, F., Davey, M. P., et al. (2007). Standard reporting requirements for biological samples in metabolomics experiments: Environmental context. Metabolomics, 3, 203–210. doi:10.1007/s11306-007-0067-1.

    Article  CAS  Google Scholar 

  • Noaksson, E., Gustavsson, B., Linderoth, M., Zebuhr, Y., Broman, D., & Balk, L. (2004). Gonad development and plasma steroid profiles by HRGC/HRMS during one reproductive cycle in reference and leachate-exposed female perch (Perca fluviatilis). Toxicology and Applied Pharmacology, 195, 247–261. doi:10.1016/j.taap.2003.11.017.

    Article  PubMed  CAS  Google Scholar 

  • OECD. (1984). OECD guidelines for testing of chemicals. No 207. Earthworm acute toxicity tests. Organisation for Economic Cooperation and Development.

  • OECD. (2004). OECD guidelines for testing of chemicals. No 222. Earthworm reproduction test (Eisenia foetida/Eisenia andrei). Organisation for Economic Cooperation and Development.

  • Orlando, E. F., & Guillette, L. (2001). A re-examination of variation associated with environmentally stressed organisms. Human Reproduction Update, 7, 265–272. doi:10.1093/humupd/7.3.265.

    Article  PubMed  CAS  Google Scholar 

  • Ossipov, V., Ossipova, S., Bykov, V., Oksanen, E., Koricheva, J., & Haukioja, E. (2008). Application of metabolomics to genotype and phenotype discrimination of birch trees grown in a long-term open-field experiment. Metabolomics, 4, 39–51. doi:10.1007/s11306-007-0097-8.

    Article  CAS  Google Scholar 

  • Overgaard, J., Malmendal, A., Sorensen, J. G., Bundy, J. G., Loeschcke, V., Nielsen, N. C., et al. (2007). Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster. Journal of Insect Physiology, 53, 1218–1232. doi:10.1016/j.jinsphys.2007.06.012.

    Article  PubMed  CAS  Google Scholar 

  • Owen, J., Hedley, B. A., Svendsen, C., Wren, J., Jonker, M. J., Hankard, P. K., et al. (2008). Transcriptome profiling of developmental and xenobiotic responses in a keystone soil animal, the oligochaete annelid Lumbricus rubellus. BMC Genomics, 9, 266. doi:10.1186/1471-2164-9-266.

    Article  PubMed  Google Scholar 

  • Parsons, H. M., Ludwig, C., Günther, U. L., & Viant, M. R. (2007). Improved classification accuracy in 1- and 2-dimensional NMR metabolomics data using the variance stabilising generalised logarithm transformation. BMC Bioinformatics, 8, 234. doi:10.1186/1471-2105-8-234.

    Article  PubMed  CAS  Google Scholar 

  • Paules, R. (2003). Phenotypic anchoring: Linking cause and effect. Environmental Health Perspectives, 111, A338–A339.

    PubMed  Google Scholar 

  • Peiris, D., Dunn, W. B., Brown, M., Kell, D. B., Roy, I., & Hedger, J. N. (2008). Metabolite profiles of interacting mycelial fronts differ for pairings of the wood decay basidiomycete fungus, Stereum hirsutum with its competitors Coprinus micaceus and Coprinus disseminatus. Metabolomics, 4, 52–62. doi:10.1007/s11306-007-0100-4.

    Article  CAS  Google Scholar 

  • Penuelas, J., & Estiarte, M. (1998). Can elevated CO2 affect secondary metabolism and ecosystem function? Trends in Ecology & Evolution, 13, 20–24. doi:10.1016/S0169-5347(97)01235-4.

    Article  Google Scholar 

  • Penuelas, J., Llusia, J., & Gimeno, B. S. (1999). Effects of ozone concentrations on biogenic volatile organic compounds emission in the Mediterranean region. Environmental Pollution, 105, 17–23. doi:10.1016/S0269-7491(98)00214-0.

    Article  CAS  Google Scholar 

  • Pincetich, C. A., Viant, M. R., Hinton, D. E., & Tjeerdema, R. S. (2005). Metabolic changes in Japanese medaka (Oryzias latipes) during embryogenesis and hypoxia as determined by in vivo 31P NMR. Comparative Biochemistry and Physiology C, 140, 103–113.

    Google Scholar 

  • Pinheiro, C., Passarinho, J. A., & Ricardo, C. P. (2004). Effect of drought and rewatering on the metabolism of Lupinus albus organs. Journal of Plant Physiology, 161, 1203–1210. doi:10.1016/j.jplph.2004.01.016.

    Article  PubMed  CAS  Google Scholar 

  • Pope, G. A., MacKenzie, D. A., Defemez, M., Aroso, M., Fuller, L. J., Mellon, F. A., et al. (2007). Metabolic footprinting as a tool for discriminating between brewing yeasts. Yeast (Chichester, England), 24, 667–679. doi:10.1002/yea.1499.

    Article  CAS  Google Scholar 

  • Rasmussen, S., Parsons, A. J., Fraser, K., Xue, H., & Newman, J. A. (2008). Metabolic profiles of Lolium perenne are differentially affected by nitrogen supply, carbohydrate content, and fungal endophyte infection. Plant Physiology, 146, 1440–1453. doi:10.1104/pp.107.111898.

    Article  PubMed  CAS  Google Scholar 

  • Riipi, M., Haukioja, E., Lempa, K., Ossipov, V., Ossipova, S., & Pihlaja, K. (2004). Ranking of individual mountain birch trees in terms of leaf chemistry: Seasonal and annual variation. Chemoecology, 14, 31–43. doi:10.1007/s00049-003-0256-y.

    Article  CAS  Google Scholar 

  • Robertson, D. G. (2005). Metabonomics in toxicology: A review. Toxicological Sciences, 85, 809–822. doi:10.1093/toxsci/kfi102.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, A. R., Ukrainetz, N. K., Kang, K. Y., & Mansfield, S. D. (2007). Metabolite profiling of Douglas-fir (Pseudotsuga menziesii) field trials reveals strong environmental and weak genetic variation. The New Phytologist, 174, 762–773. doi:10.1111/j.1469-8137.2007.02046.x.

    Article  PubMed  CAS  Google Scholar 

  • Rosenblum, E. S., Tjeerdema, R. S., & Viant, M. R. (2006). Effects of temperature on host-pathogen-drug interactions in Red Abalone, Haliotis rufescens, determined by 1H NMR metabolomics. Environmental Science and Technology, 40, 7077–7084. doi:10.1021/es061354e.

    Article  PubMed  CAS  Google Scholar 

  • Rosenblum, E. S., Viant, M. R., Braid, B. M., Moore, J. D., Friedman, C. S., & Tjeerdema, R. S. (2005). Characterizing the metabolic actions of natural stresses in the California red abalone, Haliotis rufescens using 1H NMR metabolomics. Metabolomics, 1, 199–209. doi:10.1007/s11306-005-4428-3.

    Article  CAS  Google Scholar 

  • Samuelsson, L. M., Forlin, L., Karlsson, G., Adolfsson-Eric, M., & Larsson, D. G. J. (2006). Using NMR metabolomics to identify responses of an environmental estrogen in blood plasma of fish. Aquatic Toxicology (Amsterdam, Netherlands), 78, 341–349. doi:10.1016/j.aquatox.2006.04.008.

    CAS  Google Scholar 

  • Samuelsson, L. M., & Larsson, D. G. J. (2008). Contributions from metabolomics to fish research. Molecular BioSystems, 4, 974–979. doi:10.1039/b804196b.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez, D. H., Siahpoosh, M. R., Roessner, U., Udvardi, M., & Kopka, J. (2008). Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiologia Plantarum, 132, 209–219.

    PubMed  CAS  Google Scholar 

  • Semel, Y., Schauer, N., Roessner, U., Zamir, D., & Fernie, A. R. (2007). Metabolite analysis for the comparison of irrigated and non-irrigated field grown tomato of varying genotype. Metabolomics, 3, 289–295. doi:10.1007/s11306-007-0055-5.

    Article  CAS  Google Scholar 

  • Smirnoff, N. (1998). Plant resistance to environmental stress. Current Opinion in Biotechnology, 9, 214–219. doi:10.1016/S0958-1669(98)80118-3.

    Article  PubMed  CAS  Google Scholar 

  • Smith, A. R., Johnson, H. E., & Hall, M. (2003). Metabolic fingerprinting of salt-stressed tomatoes. Bulgarian Journal of Plant Physiology, 153–163.

  • Snape, J. R., Maund, S. J., Pickford, D. B., & Hutchinson, T. H. (2004). Ecotoxicogenomics: The challenge of integrating genomics into aquatic and terrestrial ecotoxicology. Aquatic Toxicology (Amsterdam, Netherlands), 67, 143–154. doi:10.1016/j.aquatox.2003.11.011.

    CAS  Google Scholar 

  • Solanky, K. S., Burton, I. W., MacKinnon, S. L., Walter, J. A., & Dacanay, A. (2005). Metabolic changes in Atlantic salmon exposed to Aeromonas salmonicida detected by 1H nuclear magnetic resonance spectroscopy of plasma. Diseases of Aquatic Organisms, 65, 107–114. doi:10.3354/dao065107.

    Article  PubMed  CAS  Google Scholar 

  • Southam, A. D., Easton, J. M., Stentiford, G. D., Ludwig, C., Arvanitis, T. N., & Viant, M. R. (2008). Metabolic changes in flatfish hepatic tumours revealed by NMR-based metabolomics and metabolic correlation networks. Journal of Proteome Research, 7, 5277–5285. doi:10.1021/pr800353t.

    Article  CAS  PubMed  Google Scholar 

  • Spurgeon, D. J., Weeks, J. M., & Van Gestel, C. A. M. (2002). A summary of eleven years progress in earthworm ecotoxicology. Pedobiologia, 47, 588–606.

    Google Scholar 

  • Stentiford, G. D., Viant, M. R., Ward, D. G., Johnson, P. J., Martin, A., Wei, W., et al. (2005). Liver tumours in wild flatfish: A histopathological, proteomic and metabolomic study. OMICS—Journal of Integrative Biology, 9, 281–299.

    Article  CAS  Google Scholar 

  • Stewart, G. R., Larher, F., Ahmed, I., & Lee, J. A. (1979). Nitrogen metabolism and salt-tolerance in higher plant halophytes. In R. Jefferies & A. Davy (Eds.), Ecological processes in coastal environments (pp. 211–227). Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Stitt, M., & Hurry, V. (2002). A plant for all seasons: Alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Current Opinion in Plant Biology, 5, 199–206. doi:10.1016/S1369-5266(02)00258-3.

    Article  PubMed  CAS  Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221. doi:10.1007/s11306-007-0082-2.

    Article  CAS  Google Scholar 

  • Svendsen, C., Owen, J., Kille, P., Wren, J., Jonker, M. J., Headley, B. A., et al. (2008). Comparative transcriptomic responses to chronic cadmium, fluoranthene, and atrazine exposure in Lumbricus rubellus. Environmental Science and Technology, 42, 4208–4214. doi:10.1021/es702745d.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, N. S., Weber, R. J. M., Southam, A. D., Payne, T. G., Hrydziuszko, O., Arvanitis, T. N., & Viant, M. R. (in press). A new approach to toxicity testing in Daphnia magna: Application of high throughput FT-ICR mass spectrometry metabolomics. Metabolomics, 5(1). doi:10.1007/s11306-008-0133-3.

  • Thomashow, M. F. (1999). Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Physiology and Molecular Biology, 50, 571–599. doi:10.1146/annurev.arplant.50.1.571.

    Article  CAS  Google Scholar 

  • Turner, M. A., Viant, M. R., Teh, S. J., & Johnson, M. L. (2007). Developmental rates, structural asymmetry, and metabolic fingerprints of steelhead trout (Oncorhynchus mykiss) eggs incubated at two temperatures. Fish Physiology and Biochemistry, 33, 59–72. doi:10.1007/s10695-006-9117-2.

    Article  CAS  Google Scholar 

  • Urbanczyk-Wochniak, E., & Fernie, A. R. (2005). Metabolic profiling reveals altered nitrogen nutrient regimes have diverse effects on the metabolism of hydroponically-grown tomato (Solanum lycopersicum) plants. Journal of Experimental Botany, 56, 309–321. doi:10.1093/jxb/eri059.

    Article  PubMed  CAS  Google Scholar 

  • van Gestel, C. A. M., Vandis, W. A., Vanbreemen, E. M., & Sparenburg, P. M. (1989). Development of a standardized reproduction toxicity test with the earthworm species Eisenia fetida andrei using copper, pentachlorophenol, and 2, 4-dichloroaniline. Ecotoxicology and Environmental Safety, 18, 305–312. doi:10.1016/0147-6513(89)90024-9.

    Article  PubMed  Google Scholar 

  • van Straalen, N. M., & Roelofs, D. (2008). Genomics technology for assessing soil pollution. Journal of Biology (Online), 7, 19. doi:10.1186/jbiol80.

    Google Scholar 

  • Viant, M. R. (2003). Improved methods for the acquisition and interpretation of NMR metabolomic data. Biochemical and Biophysical Research Communications, 310, 943–948. doi:10.1016/j.bbrc.2003.09.092.

    Article  PubMed  CAS  Google Scholar 

  • Viant, M. R. (2007). Metabolomics of aquatic organisms: The new ‘omics’ on the block. Marine Ecology Progress Series, 332, 301–306. doi:10.3354/meps332301.

    Article  CAS  Google Scholar 

  • Viant, M. R. (2008). Recent developments in environmental metabolomics. Molecular BioSystems, 4, 980–986. doi:10.1039/b805354e.

    Article  PubMed  CAS  Google Scholar 

  • Viant, M. R., Bearden, D. W., Bundy, J. G., Burton, I. W., Collette, T. W., & Ekman, D. R., et al. (in press). International NMR-based environmental metabolomics intercomparison exercise. Environmental Science & Technology. doi:10.1021/es802198z.

  • Viant, M. R., Bundy, J. G., Pincetich, C. A., de Ropp, J. S., & Tjeerdema, R. S. (2005). NMR-derived developmental metabolic trajectories: An approach for visualizing the toxic actions of trichloroethylene during embryogenesis. Metabolomics, 1, 149–158. doi:10.1007/s11306-005-4429-2.

    Article  CAS  Google Scholar 

  • Viant, M. R., Pincetich, C. A., Hinton, D. E., & Tjeerdema, R. S. (2006a). Toxic actions of dinoseb in medaka (Oryzias latipes) embryos as determined by in vivo 31P NMR, HPLC-UV and 1H NMR metabolomics. Aquatic Toxicology (Amsterdam, Netherlands), 76, 329–342. doi:10.1016/j.aquatox.2005.10.007.

    CAS  Google Scholar 

  • Viant, M. R., Pincetich, C. A., & Tjeerdema, R. S. (2006b). Metabolic effects of dinoseb, diazinon and esfenvalerate in eyed eggs and alevins of Chinook salmon (Oncorhynchus tshawytscha) determined by 1H NMR metabolomics. Aquatic Toxicology (Amsterdam, Netherlands), 77, 359–371. doi:10.1016/j.aquatox.2006.01.009.

    CAS  Google Scholar 

  • Viant, M. R., Rosenblum, E. S., & Tjeerdema, R. S. (2003a). NMR-based metabolomics: A powerful approach for characterizing the effects of environmental stressors on organism health. Environmental Science and Technology, 37, 4982–4989. doi:10.1021/es034281x.

    Article  PubMed  CAS  Google Scholar 

  • Viant, M. R., Werner, I., Rosenblum, E. S., Gantner, A. S., Tjeerdema, R. S., & Johnson, M. L. (2003b). Correlation between heat-shock protein induction and reduced metabolic condition in juvenile steelhead trout (Oncorhynchus mykiss) chronically exposed to elevated temperature. Fish Physiology and Biochemistry, 29, 159–171. doi:10.1023/B:FISH.0000035938.92027.81.

    Article  CAS  Google Scholar 

  • Warne, M. A., Lenz, E. M., Osborn, D., Weeks, J. M., & Nicholson, J. K. (2000). An NMR-based metabonomic investigation of the toxic effects of 3-trifluoromethyl-aniline on the earthworm Eisenia veneta. Biomarkers, 5, 56–72. doi:10.1080/135475000230541.

    Article  CAS  Google Scholar 

  • Warne, M. A., Lenz, E. M., Osborn, D., Weeks, J. M., & Nicholson, J. K. (2001). Comparative biochemistry and short-term starvation effects on the earthworms Eisenia veneta and Lumbricus terrestris studied by 1H NMR spectroscopy and pattern recognition. Soil Biology and Biochemistry, 33, 1171–1180. doi:10.1016/S0038-0717(01)00021-9.

    Article  CAS  Google Scholar 

  • Waters, M., Boorman, G., Bushel, P., Cunningham, M., Irwin, R., Merrick, A., et al. (2003). Systems toxicology and the Chemical Effects in Biological Systems (CEBS) knowledge base. Environmental Health Perspectives, 111, 811–824.

    CAS  Google Scholar 

  • Widarto, H. T., Van der Meijden, E., Lefeber, A. W. M., Erkelens, C., Kim, H. K., Choi, Y. H., et al. (2006). Metabolomic differentiation of Brassica rapa following herbivory by different insect instars using two-dimensional nuclear magnetic resonance spectroscopy. Journal of Chemical Ecology, 32, 2417–2428. doi:10.1007/s10886-006-9152-6.

    Article  PubMed  CAS  Google Scholar 

  • Wishart, D. S., Tzur, D., Knox, C., Eisner, R., Guo, A. C., Young, N., et al. (2007). HMDB: The human metabolome database. Nucleic Acids Research, 35, D521–D526. doi:10.1093/nar/gkl923.

    Article  PubMed  CAS  Google Scholar 

  • Woodward, F. I. (1987). Climate and plant distribution. Cambridge: Cambridge University Press.

    Google Scholar 

  • Zhen, Y., & Ungerer, M. C. (2008). Clinal variation in freezing tolerance among natural accessions of Arabidopsis thaliana. The New Phytologist, 177, 419–427.

    PubMed  Google Scholar 

Download references

Acknowledgment

MRV thanks the NERC for an Advanced Fellowship in Metabolomics (NER/J/S/2002/00618).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Viant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bundy, J.G., Davey, M.P. & Viant, M.R. Environmental metabolomics: a critical review and future perspectives. Metabolomics 5, 3–21 (2009). https://doi.org/10.1007/s11306-008-0152-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-008-0152-0

Keywords

Navigation