Skip to main content
Log in

A carbonyl capture approach for profiling oxidized metabolites in cell extracts

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Fourier-transform ion-cyclotron resonance mass spectrometry (FT-ICR-MS) detection of oxidized cellular metabolites is described using isotopologic, carbonyl-selective derivatizing agents that integrate aminooxy functionality for carbonyl capture, quaternary nitrogen for electrospray enhancement, and a hydrophobic domain for sample cleanup. These modular structural features enable rapid, sensitive analysis of complex mixtures of metabolite-derivatives by FT-ICR-MS via continuous nanoelectrospray infusion. Specifically, this approach can be used to globally assess levels of low abundance and labile aldehyde and ketone metabolites quantitatively and in high throughput manner. These metabolites are often key and unique indicators of various biochemical pathways and their perturbations. Analysis of lung adenocarcinoma A549 cells established a profile of carbonyl metabolites spanning multiple structural classes. We also demonstrate a procedure for metabolite quantification using pyruvate as a model analyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In the case of glucose, the aldehyde of the open-chain isomer is reactive with the probe.

References

  • Barry, S. J., Carr, R. M., Lane, S. J., Leavens, W. J., Manning, C. O., Monté, S., et al. (2003). Use of S-pentafluorophenyl tris(2, 4, 6-trimethoxyphenyl)phosphonium acetate bromide and (4-hydrazino-4-oxobutyl) [tris(2, 4, 6-trimethoxyphenyl)phosphonium bromide for the derivatization of alcohols, aldehydes and ketones for detection by liquid chromatography/electrospray mass spectrometry. Rapid Communications in Mass Spectrometry, 17, 484–497.

    Article  PubMed  CAS  Google Scholar 

  • Biswas, S., Huang, X., Badger, W. R., & Nantz, M. H. (2010). Nucleophilic cationization reagents. Tetrahedron Letters, 51, 1727–1729.

    Article  PubMed  CAS  Google Scholar 

  • Eggink, M., Wijtmans, M., Kretschmer, A., Kool, J., Lingeman, H., Esch, I. J. P. d., et al. (2010). Targeted LC–MS derivatization for aldehydes and carboxylic acids with a new derivatization agent 4-APEBA. Analytical and Bioanalytical Chemistry, 397, 665–675.

    Article  PubMed  CAS  Google Scholar 

  • Fan, T. W., Lane, A. N., Higashi, R. M., Farag, M. A., Gao, H., Bousamra, M., et al. (2009). Altered regulation of metabolic pathways in human lung cancer discerned by (13)C stable isotope-resolved metabolomics (SIRM). Molecular Cancer, 8, 41.

    Article  PubMed  Google Scholar 

  • Fan, T., Lane, A., Higashi, R., & Yan, J. (2011). Stable isotope resolved metabolomics of lung cancer in a SCID mouse model. Metabolomics, 7, 257–269.

    Article  PubMed  CAS  Google Scholar 

  • Fang, K., Pan, X., Huang, B., Liu, J., Wang, Y., & Gao, J. (2010). Simultaneous derivatization of hydroxyl and ketone groups for the analysis of steroid hormones by GC–MS. Chromatographia, 72, 949–956.

    Article  CAS  Google Scholar 

  • Griffiths, W. J., Hornshaw, M., Woffendin, G., Baker, S. F., Lockhart, A., Heidelberger, S., et al. (2008). Discovering oxysterols in plasma: A window on the metabolome. Journal of Proteome Research, 7, 3602–3612.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths, W. J., Koal, T., Wang, Y., Kohl, M., Enot, D. P., & Deigner, H. -P. (2010). Targeted metabolomics for biomarker discovery. Angewandte Chemie International Edition, 49, 5426–5446.

    Article  CAS  Google Scholar 

  • Grochowski, E., & Jurczak, J. (1976). A new synthesis of O-alkylhydroxylamines. Synthesis, 682–684.

  • Hong, H., & Wang, Y. (2007). Derivatization with girard reagent T combined with LC-MS/MS for the sensitive detection of 5-formyl-2′-deoxyuridine in cellular DNA. Analytical Chemistry, 79, 322–326.

    Article  PubMed  CAS  Google Scholar 

  • Iglesias, J., Gallardo, J. M., & Medina, I. (2010). Determination of carbonyl compounds in fish species samples with solid-phase microextraction with on-fibre derivatization. Food Chemistry, 123, 771–778.

    Article  CAS  Google Scholar 

  • Johnson, D. W. (2007). A modified Girard derivatizing reagent for universal profiling and trace analysis of aldehydes and ketones by electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 21, 2926–2932.

    Article  PubMed  CAS  Google Scholar 

  • Kalia, J., & Raines, R. T. (2008). Hydrolytic stability of hydrazones and oximes. Angewandte Chemie International Edition, 47, 7523–7526.

    Article  CAS  Google Scholar 

  • Lane, A. N., Fan, T. W. -M., & Higashi, R. M. (2008). Isotopomer-based metabolomic analysis by NMR and mass spectrometry. Biophysical Tools for Biologists, 84, 541–588.

    Article  CAS  Google Scholar 

  • Lane, A. N., Fan, T. W. -M., Xie, Z., Moseley, H. N. B., & Higashi, R. M. (2009). Isotopomer analysis of lipid biosynthesis by high resolution mass spectrometry and NMR. Analytica Chimica Acta, 651, 201–208.

    Article  PubMed  CAS  Google Scholar 

  • Li, Z., Tang, Y., Liu, Y., & Li, Y. (1995). Salting effect in partially miscible systems of n-butanol-water and butanone-water. Fluid Phase Equilibria, 103, 143–153.

    Article  CAS  Google Scholar 

  • Lorkiewicz, P. K., Higashii, R. M., Lane, A. N., & Fan, T. W. -M. (2011). High information throughput analysis of nucleotides and their isotopically enriched isotopologues by direct-infusion FTICR-MS. Metabolomics.

  • Maboudou, P., Mathieu, D., Bachelet, H., Wiart, J. F., & Lhermitte, M. (2002). Detection of oxidative stress. Interest of GC-MS for malondialdehyde and formaldehyde monitoring. Biomedical Chromatography, 16, 199–202.

    Article  PubMed  CAS  Google Scholar 

  • Negre-Salvayre, A., Auge, N., Ayala, V., Basaga, H., Boada, J., Brenke, R., et al. (2010). Pathological aspects of lipid peroxidation. Free Radical Research, 44, 1125–1171.

    Article  PubMed  CAS  Google Scholar 

  • Noda, Y., Berlett, B. S., Stadtman, E. R., Aponte, A., Morgan, M., & Shen, R. -F. (2007). Identification of enzymes and regulatory proteins in Escheria coli that are oxidized under nitrogen, carbon, or phosphate starvation. Proceedings of National Academy of Sciences, 104, 18456–18460.

    Article  CAS  Google Scholar 

  • Psychogios, N., Hau, D .D., Peng, J., Guo, A. C., Mandal, R., & Bouatra, S. et al. (2011) The Human Serum Metabolome. PLoS ONE 6.

  • Rodriguez, E. C., Marcaurelle, L. A., & Bertozzi, C. R. (1998). Aminooxy-, hydrazide-, and thiosemicarbazide-functionalized saccharides: versatile reagents for glycoconjugate synthesis. The Journal of organic chemistry, 63, 7134–7135.

    Article  PubMed  CAS  Google Scholar 

  • Ross, M. M., Kidwell, D. A., & Colton, R. J. (1985). Selective detection of aldehydes and ketones by derivatization/secondary ion mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 63, 141–148.

    Article  CAS  Google Scholar 

  • Sugaya, N., Sakurai, K., Nakagawa, T., Onda, N., Onodera, S., Morita, M., et al. (2004). Development of a headspace GC/MS analysis for carbonyl compounds (Aldehydes and Ketones) in household products after derivatization with o-(2, 3, 4, 5, 6-Pentafluorobenzyl)-hydroxylamine. Analytical Sciences, 20, 865–870.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler, O. H. (1968). The girard reagents. Journal of Chemical Education, 45, 435–437.

    Article  CAS  Google Scholar 

  • Wikoff, W. R., Anfora, A. T., Liu, J., Schultz, P. G., Lesley, S. A., Peters, E. C., et al. (2009). Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proceedings of the National Academy of Sciences of the United States of America, 106, 3698–3703.

    Article  PubMed  CAS  Google Scholar 

  • Zajdel, A., Wilczok, A., Slowinski, J., Orchel, J., & Mazurek, U. (2007). Aldehydic lipid peroxidation products in human brain astrocytomas. Journal of Neuro-Oncology, 84, 167–173.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from NIH 1RO1CA118434-01A2 (TWMF), 3RO1CA118434-02S1 (TWMF), Kentucky Lung Cancer Research Program OGMB101380 (TWMF), and the University of Louisville Clinical & Translational Science Pilot Grant 20003. The FT-ICR-MS instrumentation at the Center for Regulatory and Environmental Analytical Metabolomics Mass Spectrometry Facility was funded by NSF/EPSCoR grant # EPS-0447479 (TWMF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael H. Nantz or Teresa W.-M. Fan.

Additional information

Stephanie J. Mattingly and Tao Xu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1462 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattingly, S.J., Xu, T., Nantz, M.H. et al. A carbonyl capture approach for profiling oxidized metabolites in cell extracts. Metabolomics 8, 989–996 (2012). https://doi.org/10.1007/s11306-011-0395-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-011-0395-z

Keywords

Navigation