Skip to main content

Advertisement

Log in

The effect of aging on sequestration and bioaccessibility of oxytetracycline in soils

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Veterinary antibiotics introduced into soil environment may change the composition and functioning of soil microbial communities and promote the spreading of antibiotic resistance. Actual risks depend on the antibiotic’s bioaccessibility and sequestration in soils, which may vary with contact time and soil properties. We elucidated changes in the horsebean plant’s bioaccessible oxytetracycline with increasing contact time in three different soils (cinnamon, red, and brown soil) and observed discrepancy in oxytetracycline dissipation using sequential extractions with H2O-, 0.01 M CaCl2-, and Mcllvaine- in the same three soils. The results showed lower quantities of oxytetracycline with increasing contact time over 20 days than the level in freshly contaminated soils but hugely discrepant quantities among the three tested soils. In addition, aging largely reduced dissipation of H2O-, 0.01 M CaCl2-, and Mcllvaine- extracted oxytetracycline in soils before planting. However, bioturbation helped increase the H2O-, CaCl2-, and Mcllvaine- extracted oxytetracyline from cinnamon and brown soils with aging. Lastly, correlation analysis indicated that bioaccessibility of oxytetracycline significantly correlates with the total of H2O-, CaCl2-, and Mcllvaine- extracted oxytetracycline (0.676**, p < 0.01) in soils, especially the H2O- (0.789**, p < 0.01) and Mcllvaine- (0.686**, p < 0.01) extracted oxytetracycline with aging. Overall, this study provides some basic understanding of the aging effect on sequestration and bioaccessibility of veterinary antibiotics in soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adriano D (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals. Ed. Springer-Verlag, New York

  • Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Technol 34:4259–4265

    Article  CAS  Google Scholar 

  • Bansal O (2012) A laboratory study on degradation studies of tetracycline and chlortetracycline in soils of Aligarh District as influenced by temperature, water content, concentration of farm yield manure, nitrogen and tetracyclines. Proc Natl Acad Sci India B: Biol Sci 82:503–509

    CAS  Google Scholar 

  • Bao Y, Wan Y, Zhou Q, Li W, Liu Y (2013) Competitive adsorption and desorption of oxytetracycline and cadmium with different input loadings on cinnamon soil. J Soils Sediments 13:364–374

    Article  CAS  Google Scholar 

  • Blackwell PA, Holten Lützhøft H-C, Ma H-P, Halling-Sørensen B, Boxall A, Kay P (2004) Ultrasonic extraction of veterinary antibiotics from soils and pig slurry with SPE clean-up and LC–UV and fluorescence detection. Talanta 64:1058–1064

    Article  CAS  Google Scholar 

  • Boxall AB, Johnson P, Smith EJ, Sinclair CJ, Stutt E, Levy LS (2006) Uptake of veterinary medicines from soils into plants. J Agric Food Chem 54:2288–2297

    Article  CAS  Google Scholar 

  • Brusseau ML, Jessup RE, Rao PSC (1991) Nonequilibrium sorption of organic chemicals: elucidation of rate-limiting processes. Environ Sci Technol 25:134–142

    Article  CAS  Google Scholar 

  • Burken JG, Schnoor JL (1998) Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ Sci Technol 32:3379–3385

    Article  CAS  Google Scholar 

  • Cai Z, Zhou Q, Peng S, Li K (2010) Promoted biodegradation and microbiological effects of petroleum hydrocarbons by Impatiens balsamina L. with strong endurance. J Hazard Mater 183:731–737

    Article  CAS  Google Scholar 

  • Chiou CT, Porter PE, Schmedding DW (1983) Partition equilibriums of nonionic organic compounds between soil organic matter and water. Environ Sci Technol 17:227–231

    Article  CAS  Google Scholar 

  • De Liguoro M, Cibin V, Capolongo F, Halling-Sørensen B, Montesissa C (2003) Use of oxytetracycline and tylosin in intensive calf farming: evaluation of transfer to manure and soil. Chemosphere 52:203–212

    Article  Google Scholar 

  • Eggleton J, Thomas KV (2004) A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ Int 30:973–980

    Article  CAS  Google Scholar 

  • Figueroa RA, Leonard A, MacKay AA (2004) Modeling tetracycline antibiotic sorption to clays. Environ Sci Technol 38:476–483

    Article  CAS  Google Scholar 

  • Forster M et al (2009) Sequestration of manure-applied sulfadiazine residues in soils. Environ Sci Technol 43:1824–1830

    Article  CAS  Google Scholar 

  • Förster M et al (2009) Sequestration of manure-applied sulfadiazine residues in soils. Environ Sci Technol 43:1824–1830. doi:10.1021/es8026538

    Article  Google Scholar 

  • Fries G, Marrow G, Somich C (1989) Oral bioavailability of aged polychlorinated biphenyl residues contained in soil. Bull Environ Contam Toxicol 43:683–690

    Article  CAS  Google Scholar 

  • Gonsalves D, Tucker D (1977) Behavior of oxytetracycline in Florida citrus and soils. Arch Environ Contam Toxicol 6:515–523

    Article  CAS  Google Scholar 

  • Gu C, Karthikeyan K (2005) Interaction of tetracycline with aluminum and iron hydrous oxides. Environ Sci Technol 39:2660–2667

    Article  CAS  Google Scholar 

  • Hatzinger PB, Alexander M (1995) Effect of aging of chemicals in soil on their biodegradability and extractability. Environ Sci Technol 29:537–545

    Article  CAS  Google Scholar 

  • Hu X, Zhou Q, Luo Y (2010) Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ Pollut 158:2992–2998

    Article  CAS  Google Scholar 

  • Jjemba PK (2002) The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: a review. Agric Ecosyst Environ 93:267–278

    Article  Google Scholar 

  • Kelsey JW, Alexander M (1997) Declining bioavailability and inappropriate estimation of risk of persistent compounds. Environ Toxicol Chem 16:582–585

    Article  CAS  Google Scholar 

  • Kim KR, Owens G, Kwon SI, So KH, Lee DB, Ok YS (2011) Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water Air Soil Pollut 214:163–174

    Article  CAS  Google Scholar 

  • Kong W, Li C, Dolhi JM, Li S, He J, Qiao M (2012) Characteristics of oxytetracycline sorption and potential bioavailability in soils with various physical–chemical properties. Chemosphere 87:542–548

    Article  CAS  Google Scholar 

  • Kruger W (1961) The activity of antibiotics in soil. I. Movement, stability and biological activity of antibiotics in soils and their uptake by tomato plants. S Afr J Agric Sci 4

  • Kulshrestha P, Giese RF, Aga DS (2004) Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environ Sci Technol 38:4097–4105

    Article  CAS  Google Scholar 

  • Kumar K, Gupta S, Baidoo S, Chander Y, Rosen C (2005) Antibiotic uptake by plants from soil fertilized with animal manure. J Environ Qual 34:2082–2085

    Article  CAS  Google Scholar 

  • Li Y, Zhang X, Li W, Lu X, Liu B, Wang J (2013) The residues and environmental risks of multiple veterinary antibiotics in animal faeces. Environ Monit Assess 185:2211–2220

    Article  CAS  Google Scholar 

  • Lin D, Zhou Q, Xu Y, Chen C, Li Y (2012) Physiological and molecular responses of the earthworm (Eisenia fetida) to soil chlortetracycline contamination. Environ Pollut 171:46–51

    Article  CAS  Google Scholar 

  • Loke M-L, Tjørnelund J, Halling-Sørensen B (2002) Determination of the distribution coefficient (log K d) of oxytetracycline, tylosin A, olaquindox and metronidazole in manure. Chemosphere 48:351–361

    Article  CAS  Google Scholar 

  • Lu M, Yuan D, Lin Q, Ouyang T (2010) Assessment of the bioaccessibility of polycyclic aromatic hydrocarbons in topsoils from different urban functional areas using an in vitro gastrointestinal test. Environ Monit Assess 166:29–39

    Article  CAS  Google Scholar 

  • Lu R (1999) Analytical methods for soils and agricultural chemistry. China Agricultural Science and Technology Press, Beijing, pp 107–240

    Google Scholar 

  • Ma L, Zhang J, Han L, Li W, Xu L, Hu F, Li H (2012) The effects of aging time on the fraction distribution and bioavailability of PAH. Chemosphere 86:1072–1078. doi:10.1016/j.chemosphere.2011.11.065

    Article  CAS  Google Scholar 

  • MacDougall D, Crummett WB (1980) Guidelines for data acquisition and data quality evaluation in environmental chemistry. Anal Chem 52:2242–2249

    Article  CAS  Google Scholar 

  • Natrella MG (1963) Experimental Statistics, National Bureau of Standards Handbook 91. US Government Printing Office, Washington

    Google Scholar 

  • O’Connor S, Aga DS (2007) Analysis of tetracycline antibiotics in soil: advances in extraction, clean-up, and quantification. Trends Anal Chem 26:456–465. doi:10.1016/j.trac.2007.02.007

    Article  Google Scholar 

  • Peng S, Zhou Q, Cai Z, Zhang Z (2009) Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment. J Hazard Mater 168:1490–1496

    Article  CAS  Google Scholar 

  • Peterson JR, Adams R, Cutkomp L (1971) Soil properties influencing DDT bioactivity. Soil Sci Soc Am J 35:72–78

    Article  CAS  Google Scholar 

  • Rabølle M, Spliid NH (2000) Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere 40:715–722

    Article  Google Scholar 

  • Rosendahl I et al (2011) Dissipation and sequestration of the veterinary antibiotic sulfadiazine and its metabolites under field conditions. Environ Sci Technol 45:5216–5222. doi:10.1021/es200326t

    Article  CAS  Google Scholar 

  • Simon N (2005) Loosely bound oxytetracycline in riverine sediments from two tributaries of the Chesapeake Bay. Environ Sci Technol 39:3480–3487

    Article  CAS  Google Scholar 

  • Song Y, Wang F, Yang X, Liu C, Kengara FO, Jin X, Jiang X (2011) Chemical extraction to assess the bioavailability of chlorobenzenes in soil with different aging periods. J Soils Sediments 11:1345–1354. doi:10.1007/s11368-011-0414-8

    Article  CAS  Google Scholar 

  • Steinberg SM, Pignatello JJ, Sawhney BL (1987) Persistence of 1, 2-dibromoethane in soils: entrapment in intraparticle micropores. Environ Sci Technol 21:1201–1208

    Article  CAS  Google Scholar 

  • ter Laak TL, Gebbink WA (2006) Estimation of soil sorption coefficients of veterinary pharmaceuticals from soil properties. Environ Toxicol Chem 25:933–941

    Article  Google Scholar 

  • Umbreit TH, Hesse EJ, Gallo MA (1986) Bioavailability of dioxin in soil from a 2, 4, 5-T manufacturing site. Science 232:497–499

    Article  CAS  Google Scholar 

  • van den Heuvel H, van Noort P (2003) Competition for adsorption between added phenanthrene and in situ PAHs in two sediments. Chemosphere 53:1097–1103

    Article  Google Scholar 

  • Wagner G (1995) Basic approaches and methods for quality assurance and quality control in sample collection and storage for environmental monitoring. Sci Total Environ 176:63–71

    Article  CAS  Google Scholar 

  • Wang Q, Yates SR (2008) Laboratory study of oxytetracycline degradation kinetics in animal manure and soil. J Agric Food Chem 56:1683–1688

    Article  CAS  Google Scholar 

  • Wendling LA, Kirby JK, McLaughlin MJ (2009) Aging effects on cobalt availability in soils. Environ Toxicol Chem 28:1609–1617

    Article  CAS  Google Scholar 

  • Wu SC, Gschwend PM (1986) Sorption kinetics of hydrophobic organic compounds to natural sediments and soils. Environ Sci Technol 20:717–725

    Article  CAS  Google Scholar 

  • Xie X, Zhou Q, Lin D, Guo J, Bao Y (2011) Toxic effect of tetracycline exposure on growth, antioxidative and genetic indices of wheat (Triticum aestivum L.). Environ Sci Pollut Res 18:566–575

    Article  CAS  Google Scholar 

  • Yang J, Ying G, Zhou L, Liu S, Zhao J (2009) Dissipation of oxytetracycline in soils under different redox conditions. Environ Pollut 157:2704–2709

    Article  CAS  Google Scholar 

  • Yang X, Wang F, Gu C, Jiang X (2010) Tenax TA extraction to assess the bioavailability of DDTs in cotton field soils. J Hazard Mater 179:676–683

    Article  CAS  Google Scholar 

  • Zhang Z, Zhou Q, Peng S, Cai Z (2010) Remediation of petroleum contaminated soils by joint action of Pharbitis nil L. and its microbial community. Sci Total Environ 408:5600–5605

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China as a key project (grant no. 21037002) and by the Tianjin Municipal Science and Technology Commission as a youth project (grant no. 13JCQNJC09000) and a key project (grant no. 13JCZDJC35900), and partly supported by the International Foundation for Science, Stockholm, Sweden, and the Organization for the Prohibition of Chemical Weapons, Hague, Netherlands, through a grant to Yanyu Bao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyu Bao.

Additional information

Responsible editor: Zhihong Xu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Bao, Y., Cai, Z. et al. The effect of aging on sequestration and bioaccessibility of oxytetracycline in soils. Environ Sci Pollut Res 22, 10425–10433 (2015). https://doi.org/10.1007/s11356-015-4190-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4190-7

Keywords

Navigation