Skip to main content
Log in

The completed macronuclear genome of a model ciliate Tetrahymena thermophila and its application in genome scrambling and copy number analyses

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The ciliate Tetrahymena thermophila has been a powerful model system for molecular and cellular biology. However, some investigations have been limited due to the incomplete closure and sequencing of the macronuclear genome assembly, which for many years has been stalled at 1,158 scaffolds, with large sections of unknown sequences (available in Tetrahymena Genome Database, TGD, http://ciliate.org/). Here we completed the first chromosome-level Tetrahymena macronuclear genome assembly, with approximately 300× long Single Molecule, Real-Time reads of the wild-type SB210 cells—the reference strain for the initial macronuclear genome sequencing project. All 181 chromosomes were capped with two telomeres and gaps were entirely closed. The completed genome shows significant improvements over the current assembly (TGD 2014) in both chromosome structure and sequence integrity. The majority of previously identified gene models shown in TGD were retained, with the addition of 36 new genes and 883 genes with modified gene models. The new genome and annotation were incorporated into TGD. This new genome allows for pursuit in some underexplored areas that were far more challenging previously; two of them, genome scrambling and chromosomal copy number, were investigated in this study. We expect that the completed macronuclear genome will facilitate many studies in Tetrahymena biology, as well as multiple lines of research in other eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cervantes, M.D., Hamilton, E.P., Xiong, J., Lawson, M.J., Yuan, D., Hadjithomas, M., Miao, W., and Orias, E. (2013). Selecting one of several mating types through gene segment joining and deletion in Tetrahymena thermophila. PLoS Biol 11, e1001518.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, X., Bracht, J.R., Goldman, A.D., Dolzhenko, E., Clay, D.M., Swart, E.C., Perlman, D.H., Doak, T.G., Stuart, A., Amemiya, C.T., et al. (2014). The architecture of a scrambled genome reveals massive levels of genomic rearrangement during development. Cell 158, 1187–1198.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, X., Gao, S., Liu, Y., Wang, Y., Wang, Y., and Song, W. (2016). Enzymatic and chemical mapping of nucleosome distribution in purified micro- and macronuclei of the ciliated model organism, Tetrahymena thermophila. Sci China Life Sci 59, 909–919.

    CAS  PubMed  Google Scholar 

  • Chen, X., Jiang, Y., Gao, F., Zheng, W., Krock, T.J., Stover, N.A., Lu, C., Katz, L.A., and Song, W. (2019). Genome analyses of the new model protist Euplotes vannus focusing on genome rearrangement and resistance to environmental stressors. Mol Ecol Resour 19, 1292–1308.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, T., Wang, Y., Huang, J., Chen, X., Zhao, X., Gao, S., and Song, W. (2019). Our recent progress in epigenetic research using the model ciliate, Tetrahymena thermophila. Mar Life Sci Technol 1, 4–14.

    Google Scholar 

  • Collins, K., and Gorovsky, M.A. (2005). Tetrahymena thermophila. Curr Biol 15, R317–R318.

    CAS  PubMed  Google Scholar 

  • Conesa, A., Götz, S., García-Gómez, J.M., Terol, J., Talón, M., and Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676.

    CAS  PubMed  Google Scholar 

  • Coyne, R.S., Stover, N.A., and Miao, W. (2012). Whole genome studies of Tetrahymena. In Methods in Cell Biology (Oxford: Academic Press), pp. 53–81.

    Google Scholar 

  • Coyne, R.S., Thiagarajan, M., Jones, K.M., Wortman, J.R., Tallon, L.J., Haas, B.J., Cassidy-Hanley, D.M., Wiley, E.A., Smith, J.J., Collins, K., et al. (2008). Refined annotation and assembly of the Tetrahymena thermophila genome sequence through EST analysis, comparative genomic hybridization, and targeted gap closure. BMC Genomics 9, 562–579.

    PubMed  PubMed Central  Google Scholar 

  • Delcher, A.L., Salzberg, S.L., and Phillippy, A.M. (2003). Using MUMmer to identify similar regions in large sequence sets. Curr Protoc Bioinf 00, 10.3.1–10.3.18.

    Google Scholar 

  • Doerder, F.P., Deak, J.C., and Lief, J.H. (1992). Rate of phenotypic assortment in Tetrahymena thermophila. Dev Genet 13, 126–132.

    CAS  PubMed  Google Scholar 

  • Eisen, J.A., Coyne, R.S., Wu, M., Wu, D., Thiagarajan, M., Wortman, J.R., Badger, J.H., Ren, Q., Amedeo, P., Jones, K.M., et al. (2006). Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol 4, e286.

    PubMed  PubMed Central  Google Scholar 

  • English, A.C., Richards, S., Han, Y., Wang, M., Vee, V., Qu, J., Qin, X., Muzny, D.M., Reid, J.G., Worley, K.C., et al. (2012). Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS ONE 7, e47768.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, W., Wang, X., Bracht, J.R., Nowacki, M., and Landweber, L.F. (2012). Piwi-interacting RNAs protect DNA against loss during Oxytricha genome rearrangement. Cell 151, 1243–1255.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, L., Wang, G., Hamilton, E.P., Xiong, J., Yan, G., Chen, K., Chen, X., Dui, W., Plemens, A., Khadr, L., et al. (2017). A germline-limited piggyBac transposase gene is required for precise excision in Tetrahymena genome rearrangement. Nucleic Acids Res 45, 9481–9502.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser, C.M., Eisen, J.A., Nelson, K.E., Paulsen, I.T., and Salzberg, S.L. (2002). The value of complete microbial genome sequencing (you get what you pay for). J Bacteriol 184, 6403–6405.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gall, J.G. (1974). Free ribosomal RNA genes in the macronucleus of Tetrahymena. Proc Natl Acad Sci USA 71, 3078–3081.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, S., Xiong, J., Zhang, C., Berquist, B.R., Yang, R., Zhao, M., Molascon, A.J., Kwiatkowski, S.Y., Yuan, D., Qin, Z., et al. (2013). Impaired replication elongation in Tetrahymena mutants deficient in histone H3 Lys 27 monomethylation. Genes Dev 27, 1662–1679.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton, E.P., Dear, P.H., Rowland, T., Saks, K., Eisen, J.A., and Orias, E. (2006). Use of HAPPY mapping for the higher order assembly of the Tetrahymena genome. Genomics 88, 443–451.

    CAS  PubMed  Google Scholar 

  • Hamilton, E.P., Kapusta, A., Huvos, P.E., Bidwell, S.L., Zafar, N., Tang, H., Hadjithomas, M., Krishnakumar, V., Badger, J.H., Caler, E.V., et al. (2016). Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome. eLife 5, e19090.

    PubMed  PubMed Central  Google Scholar 

  • He, M., Wang, J., Fan, X., Liu, X., Shi, W., Huang, N., Zhao, F., and Miao, M. (2019). Genetic basis for the establishment of endosymbiosis in Paramecium. ISME J 13, 1360–1369.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karrer, K.M. (1999). Tetrahymena genetics: two nuclei are better than one. In Methods in Cell Biology (Oxford: Academic Press), pp. 127–186.

    Google Scholar 

  • Karrer, K.M. (2012). Nuclear dualism. In Methods in Cell Biology (Oxford: Academic Press), pp. 29–52.

    Google Scholar 

  • Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and Salzberg, S. L. (2013). TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14, R36.

    PubMed  PubMed Central  Google Scholar 

  • Klobutcher, L.A., Huff, M.E., and Gonye, G.E. (1988). Alternative use of chromosome fragmentation sites in the ciliated protozoan Oxytricha nova. Nucl Acids Res 16, 251–264.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H., and Phillippy, A.M. (2017). Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27, 722–736.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larson, D.D., Blackburn, E.H., Yaeger, P.C., and Orias, E. (1986). Control of rDNA replication in Tetrahymena involves a cis-acting upstream repeat of a promoter element. Cell 47, 229–240.

    CAS  PubMed  Google Scholar 

  • Larson, D.D., Umthun, A.R., and Shaiu, W.L. (1991). Copy number control in the Tetrahymena macronuclear genome. J Protozool 38, 258–263.

    CAS  PubMed  Google Scholar 

  • Lindblad, K.A., Pathmanathan, J.S., Moreira, S., Bracht, J.R., Sebra, R.P., Hutton, E.R., and Landweber, L.F. (2019). Capture of complete ciliate chromosomes in single sequencing reads reveals widespread chromosome isoforms. BMC Genomics 20, 1.

    Google Scholar 

  • Mochizuki, K., Fine, N.A., Fujisawa, T., and Gorovsky, M.A. (2002). Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in Tetrahymena. Cell 110, 689–699.

    CAS  PubMed  Google Scholar 

  • Mochizuki, K., and Gorovsky, M.A. (2004a). Conjugation-specific small RNAs in Tetrahymena have predicted properties of scan (scn) RNAs involved in genome rearrangement. Genes Dev 18, 2068–2073.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mochizuki, K., and Gorovsky, M.A. (2004b). Small RNAs in genome rearrangement in Tetrahymena. Curr Opin Genet Dev 14, 181–187.

    CAS  PubMed  Google Scholar 

  • Mochizuki, K., and Gorovsky, M.A. (2005). A Dicer-like protein in Tetrahymena has distinct functions in genome rearrangement, chromosome segregation, and meiotic prophase. Genes Dev 19, 77–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammad, M.M., Donti, T.R., Sebastian Yakisich, J., Smith, A.G., and Kapler, G.M. (2007). Tetrahymena ORC contains a ribosomal RNA fragment that participates in rDNA origin recognition. EMBO J 26, 5048–5060.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nowacki, M., Vijayan, V., Zhou, Y., Schotanus, K., Doak, T.G., and Landweber, L.F. (2008). RNA-mediated epigenetic programming of a genome-rearrangement pathway. Nature 451, 153–158.

    CAS  PubMed  Google Scholar 

  • Orias, E., and Flacks, M. (1975). Macronuclear genetics of Tetrahymena I. Random distribution of macronuclear gene copies in T. pyriformis, syngen 1. Genetics 79, 187–206.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orias, E., Singh, D.P., and Meyer, E. (2017). Genetics and epigenetics of mating type determination in Paramecium and Tetrahymena. Annu Rev Microbiol 71, 133–156.

    CAS  PubMed  Google Scholar 

  • Prescott, D.M. (1994). The DNA of ciliated protozoa. Microbiol Mol Biol Rev 58, 233–267.

    CAS  Google Scholar 

  • Prescott, D.M. (2000). Genome gymnastics: unique modes of DNA evolution and processing in ciliates. Nat Rev Genet 1, 191–198.

    CAS  PubMed  Google Scholar 

  • Rasko, D.A., Webster, D.R., Sahl, J.W., Bashir, A., Boisen, N., Scheutz, F., Paxinos, E.E., Sebra, R., Chin, C.S., Iliopoulos, D., et al. (2011). Origins of the E. coli strain causing an outbreak of Hemolytic-Uremic syndrome in Germany. N Engl J Med 365, 709–717.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ray Jr., C. (1956). Meiosis and nuclear behavior in Tetrahymena pyriformis. J Protozool 3, 88–96.

    Google Scholar 

  • Roberts, R.J., Carneiro, M.O., and Schatz, M.C. (2013). The advantages of SMRT sequencing. Genome Biol 14, 405–408.

    PubMed  PubMed Central  Google Scholar 

  • Ruehle, M.D., Orias, E., and Pearson, C.G. (2016). Tetrahymena as a unicellular model eukaryote: genetic and genomic tools. Genetics 203, 649–665.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., and Morgenstern, B. (2006). AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 34, W435–W439.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stover, N.A., Krieger, C.J., Binkley, G., Dong, Q., Fisk, D.G., Nash, R., Sethuraman, A., Weng, S., and Cherry, J.M. (2006). Tetrahymena Genome Database (TGD): a new genomic resource for Tetrahymena thermophila research. Nucleic Acids Res 34, D500–D503.

    CAS  PubMed  Google Scholar 

  • Stover, N.A., Punia, R.S., Bowen, M.S., Dolins, S.B., and Clark, T.G. (2012). Tetrahymena Genome Database Wiki: a community-maintained model organism database. Database 2012, bas007.

    PubMed  PubMed Central  Google Scholar 

  • Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C.A., Zeng, Q., Wortman, J., Young, S.K., et al. (2014). Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963.

    PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Wang, C., Jiang, Y., Katz, L.A., Gao, F., and Yan, Y. (2019a). Further analyses of variation of ribosome DNA copy number and polymorphism in ciliates provide insights relevant to studies of both molecular ecology and phylogeny. Sci China Life Sci 62, 203–214.

    PubMed  Google Scholar 

  • Wang, Y., Wang, Y., Sheng, Y., Huang, J., Chen, X., Al-Rasheid, K.A.S., and Gao, S. (2017a). A comparative study of genome organization and epigenetic mechanisms in model ciliates, with an emphasis on Tetrahymena, Paramecium and Oxytricha. Eur J Protistol 61, 376–387.

    PubMed  Google Scholar 

  • Wang, Y., Chen, X., Sheng, Y., Liu, Y., and Gao, S. (2017b). N6-adenine DNA methylation is associated with the linker DNA of H2A.Z-containing well-positioned nucleosomes in Pol II-transcribed genes in Tetrahymena. Nucleic Acids Res 45, 11594–11606.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Sheng, Y., Liu, Y., Zhang, W., Cheng, T., Duan, L., Pan, B., Qiao, Y., Liu, Y., and Gao, S. (2019b). A distinct class of eukaryotic MT-A70 methyltransferases maintain symmetric DNA N6-adenine methylation at the ApT dinucleotides as an epigenetic mark associated with transcription. Nucleic Acids Res 47, 11771–11789.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong, J., Gao, S., Dui, W., Yang, W., Chen, X., Taverna, S.D., Pearlman, R.E., Ashlock, W., Miao, W., and Liu, Y. (2016). Dissecting relative contributions of cis- and trans-determinants to nucleosome distribution by comparing Tetrahymena macronuclear and micronuclear chromatin. Nucleic Acids Res 44, 10091–10105.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong, J., Lu, X., Zhou, Z., Chang, Y., Yuan, D., Tian, M., Zhou, Z., Wang, L., Fu, C., Orias, E., et al. (2012). Transcriptome analysis of the model protozoan, Tetrahymena thermophila, using deep RNA sequencing. PLoS ONE 7, e30630.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, B., Li, H., Perry, J.M., Singh, V.P., Unruh, J., Yu, Z., Zakari, M., McDowell, W., Li, L., and Gerton, J.L. (2017). Ribosomal DNA copy number loss and sequence variation in cancer. PLoS Genet 13, e1006771.

    PubMed  PubMed Central  Google Scholar 

  • Xu, J., Li, X., Song, W., Wang, W., and Gao, S. (2019). Cyclin Cyc2p is required for micronuclear bouquet formation in Tetrahymena thermophila. Sci China Life Sci 62, 668–680.

    CAS  PubMed  Google Scholar 

  • Yan, Y., Maurer-Alcalá, X.X., Knight, R., Kosakovsky Pond, S.L., and Katz, L.A. (2019). Single-cell transcriptomics reveal a correlation between genome architecture and gene family evolution in ciliates. mBio 10, https://doi.org/10.1128/mBio.02524-19.

  • Yao, M.C., and Yao, C.H. (1989). Accurate processing and amplification of cloned germ line copies of ribosomal DNA injected into developing nuclei of Tetrahymena thermophila. Mol Cell Biol 9, 1092–1099.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, T., Wang, C., Katz, L.A., and Gao, F. (2018). A paradox: rapid evolution rates of germline-limited sequences are associated with conserved patterns of rearrangements in cryptic species of Chilodonella uncinata (Protista, Ciliophora). Sci China Life Sci 61, 1071–1078.

    CAS  PubMed  Google Scholar 

  • Zhao, X., Wang, Y., Wang, Y., Liu, Y., and Gao, S. (2017). Histone methyltransferase TXR1 is required for both H3 and H3.3 lysine 27 methylation in the well-known ciliated protist Tetrahymena thermophila. Sci China Life Sci 60, 264–270.

    CAS  PubMed  Google Scholar 

  • Zhao, X., Xiong, J., Mao, F., Sheng, Y., Chen, X., Feng, L., Dui, W., Yang, W., Kapusta, A., Feschotte, C., et al. (2019). RNAi-dependent Polycomb repression controls transposable elements in Tetrahymena. Genes Dev 33, 348–364.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (JQ201706), The Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) (2018SDKJ0406-2), Fundamental Research Funds for the Central Universities (201841005), the Blue Life Breakthrough Program of LMBB of Qingdao National Laboratory for Marine Science and Technology (MS2018NO04), and National Institutes of Health (2P40OD010964). The authors would like to thank the following people for assistance with this study: Dr. Weibo Zheng (Ocean University of China) for providing advice during data analysis; Mr. Bo Pan (OUC) for helping revise the manuscript; and Dr. Mingjian Liu (OUC) for taking photos of T. thermophila. Our special thanks are given to Dr. Weibo Song (OUC) and Dr. Yifan Liu (University of Michigan) for their helpful suggestions during drafting the manuscript. We also acknowledge the computing resources provided on IEMB-1, a high-performance computing cluster operated by the Institute of Evolution and Marine Biodiversity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Gao.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Supporting Information

Figure S1 Gel electrophoresis results in this study.

Figure S2 qPCR analysis confirmed that the copy number of the rDNA minichromosome increases in replication-deficient ΔTXR1 cells.

Table S1 Primers used in this study

Table S2 TGD genes BLAST to the predicted genes

Table S3 TGD proteins BLAST to the predicted proteins

The supporting information is available online at http://life.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, Y., Duan, L., Cheng, T. et al. The completed macronuclear genome of a model ciliate Tetrahymena thermophila and its application in genome scrambling and copy number analyses. Sci. China Life Sci. 63, 1534–1542 (2020). https://doi.org/10.1007/s11427-020-1689-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1689-4

Navigation