Skip to main content

Advertisement

Log in

The Role of Oxidative Stress, Metabolic Compromise, and Inflammation in Neuronal Injury Produced by Amphetamine-Related Drugs of Abuse

  • Invited Review
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) are amphetamine derivatives with high abuse liability. These amphetamine-related drugs of abuse mediate their effects through the acute activation of both dopaminergic and serotonergic neurons. Long-term abuse of these amphetamine derivatives, however, results in damage to both dopaminergic and serotonergic terminals throughout the brain. This toxicity is mediated in part by oxidative stress, metabolic compromise, and inflammation. The overall objective of this review is to highlight experimental evidence that METH and MDMA increase oxidative stress, produce mitochondrial dysfunction, and increase inflammation that converge and culminate in the long-term toxicity to dopaminergic and serotonergic neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Asanuma M, Tsuji T, Miyazaki I, Miyoshi K, Ogawa N (2003) Methamphetamine-induced neurotoxicity in mouse brain is attenuated by ketoprofen, a non-steroidal anti-inflammatory drug. Neurosci Lett 352:13–16 doi:10.1016/j.neulet.2003.08.015

    PubMed  CAS  Google Scholar 

  • Barhoumi R, Faske J, Liu X, Tjalkens RB (2004) Manganese potentiates lipopolysaccharide-induced expression of NOS2 in C6 glioma cells through mitochondrial-dependent activation of nuclear factor kappa B. Brain Res Mol Brain Res 122:167–179 doi:10.1016/j.molbrainres.2003.12.009

    PubMed  CAS  Google Scholar 

  • Battaglia G, Yeh SY, O’Hearn E, Molliver ME, Kuhar MJ, De Souza EB (1987) 3,4-Methylenedioxymethamphetamine and 3,4-methylenedioxyamphetamine destroy serotonin terminals in rat brain: quantification of neurodegeneration by measurement of [3H]paroxetine-labeled serotonin uptake sites. J Pharmacol Exp Ther 242:911–916

    PubMed  CAS  Google Scholar 

  • Battaglia G, Fornai F, Busceti CL, Aloisi G, Cerrito F, de Blasi A et al (2002) Selective blockade of mGlu5 metabotropic glutamate receptors is protective against methamphetamine neurotoxicity. J Neurosci 22:2135–2141

    PubMed  CAS  Google Scholar 

  • Bemeur C, Ste-Marie L, Desjardins P, Vachon L, Butterworth RF, Hazell AS et al (2005) Dehydroascorbic acid normalizes several markers of oxidative stress and inflammation in acute hyperglycemic focal cerebral ischemia in the rat. Neurochem Int 46:399–407 doi:10.1016/j.neuint.2004.11.007

    PubMed  CAS  Google Scholar 

  • Ben Shaul V, Lomnitski L, Nyska A, Zurovsky Y, Bergman M, Grossman S (2001) The effect of natural antioxidants, NAO and apocynin, on oxidative stress in the rat heart following LPS challenge. Toxicol Lett 123:1–10 doi:10.1016/S0378-4274(01)00369-1

    PubMed  CAS  Google Scholar 

  • Bittner SE, Wagner GC, Aigner TG, Seiden LS (1981) Effects of a high-dose treatment of methamphetamine on caudate dopamine and anorexia in rats. Pharmacol Biochem Behav 14:481–486 doi:10.1016/0091-3057(81)90306-3

    PubMed  CAS  Google Scholar 

  • Bowler RP, Sheng H, Enghild JJ, Pearlstein RD, Warner DS, Crapo JD (2002) A catalytic antioxidant (AEOL 10150) attenuates expression of inflammatory genes in stroke. Free Radic Biol Med 33:1141–1152 doi:10.1016/S0891-5849(02)01008-0

    PubMed  CAS  Google Scholar 

  • Bowyer JF, Ali S (2006) High doses of methamphetamine that cause disruption of the blood–brain barrier in limbic regions produce extensive neuronal degeneration in mouse hippocampus. Synapse 60:521–532 doi:10.1002/syn.20324

    PubMed  CAS  Google Scholar 

  • Bowyer JF, Davies DL, Schmued L, Broening HW, Newport GD, Slikker W Jr et al (1994) Further studies of the role of hyperthermia in methamphetamine neurotoxicity. J Pharmacol Exp Ther 268:1571–1580

    PubMed  CAS  Google Scholar 

  • Breier JM, Bankson MG, Yamamoto BK (2006) L-tyrosine contributes to (+)-3,4-methylenedioxymethamphetamine-induced serotonin depletions. J Neurosci 26:290–299 doi:10.1523/JNEUROSCI.3353-05.2006

    PubMed  CAS  Google Scholar 

  • Brown JM, Quinton MS, Yamamoto BK (2005) Methamphetamine-induced inhibition of mitochondrial complex II: roles of glutamate and peroxynitrite. J Neurochem 95:429–436 doi:10.1111/j.1471-4159.2005.03379.x

    PubMed  CAS  Google Scholar 

  • Burrows KB, Gudelsky G, Yamamoto BK (2000a) Rapid and transient inhibition of mitochondrial function following methamphetamine or 3,4-methylenedioxymethamphetamine administration. Eur J Pharmacol 398:11–18 doi:10.1016/S0014-2999(00)00264-8

    PubMed  CAS  Google Scholar 

  • Burrows KB, Nixdorf WL, Yamamoto BK (2000b) Central administration of methamphetamine synergizes with metabolic inhibition to deplete striatal monoamines. J Pharmacol Exp Ther 292:853–860

    PubMed  CAS  Google Scholar 

  • Cadet JL, Sheng P, Ali S, Rothman R, Carlson E, Epstein C (1994) Attenuation of methamphetamine-induced neurotoxicity in copper/zinc superoxide dismutase transgenic mice. J Neurochem 62:380–383

    PubMed  CAS  Google Scholar 

  • Cadet JL, Ladenheim B, Hirata H, Rothman RB, Ali S, Carlson E et al (1995) Superoxide radicals mediate the biochemical effects of methylenedioxymethamphetamine (MDMA): evidence from using CuZn-superoxide dismutase transgenic mice. Synapse 21:169–176 doi:10.1002/syn.890210210

    PubMed  CAS  Google Scholar 

  • Candelario-Jalil E, de Oliveira AC, Graf S, Bhatia HS, Hull M, Munoz E et al (2007) Resveratrol potently reduces prostaglandin E2 production and free radical formation in lipopolysaccharide-activated primary rat microglia. J Neuroinflammation 4:25 doi:10.1186/1742-2094-4-25

    PubMed  Google Scholar 

  • Chan P, Di Monte DA, Luo JJ, DeLanney LE, Irwin I, Langston JW (1994) Rapid ATP loss caused by methamphetamine in the mouse striatum: relationship between energy impairment and dopaminergic neurotoxicity. J Neurochem 62:2484–2487

    PubMed  CAS  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    PubMed  CAS  Google Scholar 

  • Cohen G (1987) Monoamine oxidase, hydrogen peroxide, and Parkinson’s disease. Adv Neurol 45:119–125

    PubMed  CAS  Google Scholar 

  • Colado MI, Green AR (1995) The spin trap reagent alpha-phenyl-N-tert-butyl nitrone prevents ‘ecstasy’-induced neurodegeneration of 5-hydroxytryptamine neurones. Eur J Pharmacol 280:343–346 doi:10.1016/0014-2999(95)00298-Y

    PubMed  CAS  Google Scholar 

  • Colton CA, Keri JE, Chen WT, Monsky WL (1993) Protease production by cultured microglia: substrate gel analysis and immobilized matrix degradation. J Neurosci Res 35:297–304 doi:10.1002/jnr.490350309

    PubMed  CAS  Google Scholar 

  • Cunningham J, Raudensky J, Gudelsky G, Tonkiss J, Yamamoto BK (2004) Acute and long-term neurobiological effects of MDMA (ecstasy) on the hippocampus. Society for Neuroscience, Washington, DC, 2004 Program No.689.2.2004 Abstract Viewer/Itinerary Planner

  • Darvesh AS, Gudelsky GA (2005) Evidence for a role of energy dysregulation in the MDMA-induced depletion of brain 5-HT. Brain Res 1056:168–175 doi:10.1016/j.brainres.2005.07.009

    PubMed  CAS  Google Scholar 

  • Darvesh AS, Shankaran M, Gudelsky GA (2002) 3,4-Methylenedioxymethamphetamine produces glycogenolysis and increases the extracellular concentration of glucose in the rat brain. J Pharmacol Exp Ther 301:138–144 doi:10.1124/jpet.301.1.138

    PubMed  CAS  Google Scholar 

  • Darvesh AS, Yamamoto BK, Gudelsky GA (2005) Evidence for the involvement of nitric oxide in 3,4-methylenedioxymethamphetamine-induced serotonin depletion in the rat brain. J Pharmacol Exp Ther 312:694–701 doi:10.1124/jpet.104.074849

    PubMed  CAS  Google Scholar 

  • Dawson VL, Dawson TM (1996) Nitric oxide neurotoxicity. J Chem Neuroanat 10:179–190 doi:10.1016/0891-0618(96)00148-2

    PubMed  CAS  Google Scholar 

  • De Vito MJ, Wagner GC (1989) Methamphetamine-induced neuronal damage: a possible role for free radicals. Neuropharmacology 28:1145–1150 doi:10.1016/0028-3908(89)90130-5

    PubMed  Google Scholar 

  • Dumuis A, Sebben M, Haynes L, Pin JP, Bockaert J (1988) NMDA receptors activate the arachidonic acid cascade system in striatal neurons. Nature 336:68–70 doi:10.1038/336068a0

    PubMed  CAS  Google Scholar 

  • Dykens JA, Stern A, Trenkner E (1987) Mechanism of kainate toxicity to cerebellar neurons in vitro is analogous to reperfusion tissue injury. J Neurochem 49:1222–1228 doi:10.1111/j.1471-4159.1987.tb10014.x

    PubMed  CAS  Google Scholar 

  • Eisch AJ, Schmued LC, Marshall JF (1998) Characterizing cortical neuron injury with Fluoro-Jade labeling after a neurotoxic regimen of methamphetamine. Synapse 30:329–333 doi:10.1002/(SICI)1098-2396(199811)30:3<329::AID-SYN10>3.0.CO;2-V

    PubMed  CAS  Google Scholar 

  • Escubedo E, Guitart L, Sureda FX, Jimenez A, Pubill D, Pallas M et al (1998) Microgliosis and down-regulation of adenosine transporter induced by methamphetamine in rats. Brain Res 814:120–126 doi:10.1016/S0006-8993(98)01065-8

    PubMed  CAS  Google Scholar 

  • Ethell IM, Ethell DW (2007) Matrix metalloproteinases in brain development and remodeling: synaptic functions and targets. J Neurosci Res 85:2813–2823 doi:10.1002/jnr.21273

    PubMed  CAS  Google Scholar 

  • Eyerman DJ, Yamamoto BK (2007) A rapid oxidation and persistent decrease in the vesicular monoamine transporter 2 after methamphetamine. J Neurochem 103:1219–1227

    PubMed  CAS  Google Scholar 

  • Falk EM, Cook VJ, Nichols DE, Sprague JE (2002) An antisense oligonucleotide targeted at MAO-B attenuates rat striatal serotonergic neurotoxicity induced by MDMA. Pharmacol Biochem Behav 72:617–622 doi:10.1016/S0091-3057(02)00728-1

    PubMed  CAS  Google Scholar 

  • Farfel GM, Seiden LS (1995a) Role of hypothermia in the mechanism of protection against serotonergic toxicity. I. Experiments using 3,4-methylenedioxymethamphetamine, dizocilpine, CGS 19755 and NBQX. J Pharmacol Exp Ther 272:860–867

    PubMed  CAS  Google Scholar 

  • Farfel GM, Seiden LS (1995b) Role of hypothermia in the mechanism of protection against serotonergic toxicity. II. Experiments with methamphetamine, p-chloroamphetamine, fenfluramine, dizocilpine and dextromethorphan. J Pharmacol Exp Ther 272:868–875

    PubMed  CAS  Google Scholar 

  • Farfel GM, Vosmer GL, Seiden LS (1992) The N-methyl-d-aspartate antagonist MK-801 protects against serotonin depletions induced by methamphetamine, 3,4-methylenedioxymethamphetamine and p-chloroamphetamine. Brain Res 595:121–127 doi:10.1016/0006-8993(92)91460-V

    PubMed  CAS  Google Scholar 

  • Fazo N, Raudensky J, Yamamoto BK (2008) Methamphetamine neurotoxicity: possible roles for matrix metalloproteinases. Society on NeuroImmune Pharmacology Poster #W8

  • Fleckenstein AE, Gibb JW, Hanson GR (2000) Differential effects of stimulants on monoaminergic transporters: pharmacological consequences and implications for neurotoxicity. Eur J Pharmacol 406:1–13 doi:10.1016/S0014-2999(00)00639-7

    PubMed  CAS  Google Scholar 

  • Fornstedt B, Brun A, Rosengren E, Carlsson A (1989) The apparent autoxidation rate of catechols in dopamine-rich regions of human brains increases with the degree of depigmentation of substantia nigra. J Neural Transm Park Dis Dement Sect 1:279–295 doi:10.1007/BF02263482

    PubMed  CAS  Google Scholar 

  • Fukami G, Hashimoto K, Koike K, Okamura N, Shimizu E, Iyo M (2004) Effect of antioxidant N-acetyl-l-cysteine on behavioral changes and neurotoxicity in rats after administration of methamphetamine. Brain Res 1016:90–95 doi:10.1016/j.brainres.2004.04.072

    PubMed  CAS  Google Scholar 

  • Fumagalli F, Gainetdinov RR, Wang YM, Valenzano KJ, Miller GW, Caron MG (1999) Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knock-out mice. J Neurosci 19:2424–2431

    PubMed  CAS  Google Scholar 

  • Gasche Y, Copin JC, Sugawara T, Fujimura M, Chan PH (2001) Matrix metalloproteinase inhibition prevents oxidative stress-associated blood-brain barrier disruption after transient focal cerebral ischemia. J Cereb Blood Flow Metab 21:1393–1400 doi:10.1097/00004647-200112000-00003

    PubMed  CAS  Google Scholar 

  • Gibb JW, Johnson M, Hanson GR (1990) Neurochemical basis of neurotoxicity. Neurotoxicology 11:317–321

    PubMed  CAS  Google Scholar 

  • Giovanni A, Liang LP, Hastings TG, Zigmond MJ (1995) Estimating hydroxyl radical content in rat brain using systemic and intraventricular salicylate: impact of methamphetamine. J Neurochem 64:1819–1825

    PubMed  CAS  Google Scholar 

  • Gluck MR, Moy LY, Jayatilleke E, Hogan KA, Manzino L, Sonsalla PK (2001) Parallel increases in lipid and protein oxidative markers in several mouse brain regions after methamphetamine treatment. J Neurochem 79:152–160 doi:10.1046/j.1471-4159.2001.00549.x

    PubMed  CAS  Google Scholar 

  • Gottschall PE, Yu X (1995) Cytokines regulate gelatinase A and B (matrix metalloproteinase 2 and 9) activity in cultured rat astrocytes. J Neurochem 64:1513–1520

    PubMed  CAS  Google Scholar 

  • Gottschall PE, Yu X, Bing B (1995) Increased production of gelatinase B (matrix metalloproteinase-9) and interleukin-6 by activated rat microglia in culture. J Neurosci Res 42:335–342 doi:10.1002/jnr.490420307

    PubMed  CAS  Google Scholar 

  • Gudelsky GA (1996) Effect of ascorbate and cysteine on the 3,4-methylenedioxymethamphetamine-induced depletion of brain serotonin. J Neural Transm 103:1397–1404 doi:10.1007/BF01271253

    PubMed  CAS  Google Scholar 

  • Hanisch UK (2002) Microglia as a source and target of cytokines. Glia 40:140–155 doi:10.1002/glia.10161

    PubMed  Google Scholar 

  • Haorah J, Ramirez SH, Schall K, Smith D, Pandya R, Persidsky Y (2007) Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood–brain barrier dysfunction. J Neurochem 101:566–576 doi:10.1111/j.1471-4159.2006.04393.x

    PubMed  CAS  Google Scholar 

  • Harkness KA, Adamson P, Sussman JD, Davies-Jones GA, Greenwood J, Woodroofe MN (2000) Dexamethasone regulation of matrix metalloproteinase expression in CNS vascular endothelium. Brain 123(Pt 4):698–709 doi:10.1093/brain/123.4.698

    PubMed  Google Scholar 

  • Hess A, Desiderio C, McAuliffe WG (1990) Acute neuropathological changes in the caudate nucleus caused by MPTP and methamphetamine: immunohistochemical studies. J Neurocytol 19:338–342 doi:10.1007/BF01188403

    PubMed  CAS  Google Scholar 

  • Hotchkiss AJ, Gibb JW (1980) Long-term effects of multiple doses of methamphetamine on tryptophan hydroxylase and tyrosine hydroxylase activity in rat brain. J Pharmacol Exp Ther 214:257–262

    PubMed  CAS  Google Scholar 

  • Huang YH, Tsai SJ, Su TW, Sim CB (1999) Effects of repeated high-dose methamphetamine on local cerebral glucose utilization in rats. Neuropsychopharmacology 21:427–434 doi:10.1016/S0893-133X(99)00029-9

    PubMed  CAS  Google Scholar 

  • Hunter RL, Dragicevic N, Seifert K, Choi DY, Liu M, Kim HC et al (2007) Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system. J Neurochem 100:1375–1386 doi:10.1111/j.1471-4159.2006.04327.x

    PubMed  CAS  Google Scholar 

  • Imam SZ, Crow JP, Newport GD, Islam F, Slikker W Jr, Ali SF (1999) Methamphetamine generates peroxynitrite and produces dopaminergic neurotoxicity in mice: protective effects of peroxynitrite decomposition catalyst. Brain Res 837:15–21 doi:10.1016/S0006-8993(99)01663-7

    PubMed  CAS  Google Scholar 

  • Imam SZ, Islam F, Itzhak Y, Slikker W Jr, Ali SF (2000) Prevention of dopaminergic neurotoxicity by targeting nitric oxide and peroxynitrite: implications for the prevention of methamphetamine-induced neurotoxic damage. Ann N Y Acad Sci 914:157–171

    PubMed  CAS  Google Scholar 

  • Itzhak Y, Ali SF (1996) The neuronal nitric oxide synthase inhibitor, 7-nitroindazole, protects against methamphetamine-induced neurotoxicity in vivo. J Neurochem 67:1770–1773

    PubMed  CAS  Google Scholar 

  • Jayanthi S, Ladenheim B, Cadet JL (1998) Methamphetamine-induced changes in antioxidant enzymes and lipid peroxidation in copper/zinc-superoxide dismutase transgenic mice. Ann N Y Acad Sci 844:92–102 doi:10.1111/j.1749-6632.1998.tb08224.x

    PubMed  CAS  Google Scholar 

  • Jayanthi S, Ladenheim B, Andrews AM, Cadet JL (1999) Overexpression of human copper/zinc superoxide dismutase in transgenic mice attenuates oxidative stress caused by methylenedioxymethamphetamine (ecstasy). Neuroscience 91:1379–1387 doi:10.1016/S0306-4522(98)00698-8

    PubMed  CAS  Google Scholar 

  • Jian LK, Rosenberg GA (2005) Matrix metalloproteinases and free radicals in cerebral ischemia. Free Radic Biol Med 39:71–80 doi:10.1016/j.freeradbiomed.2005.06.008

    Google Scholar 

  • Kim GW, Gasche Y, Grzeschik S, Copin JC, Maier CM, Chan PH (2003) Neurodegeneration in striatum induced by the mitochondrial toxin 3-nitropropionic acid: role of matrix metalloproteinase-9 in early blood–brain barrier disruption? J Neurosci 23:8733–8742

    PubMed  CAS  Google Scholar 

  • Kita T, Shimada K, Mastunari Y, Wagner GC, Kubo K, Nakashima T (2000) Methamphetamine-induced striatal dopamine neurotoxicity and cyclooxygenase-2 protein expression in BALN/c mice. Neuropharmacology 39:399–406

    PubMed  CAS  Google Scholar 

  • Kokoshka JM, Metzger RR, Wilkins DG, Gibb JW, Hanson GR, Fleckenstein AE (1998) Methamphetamine treatment rapidly inhibits serotonin, but not glutamate, transporters in rat brain. Brain Res 799:78–83 doi:10.1016/S0006-8993(98)00472-7

    PubMed  CAS  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318 doi:10.1016/0166-2236(96)10049-7

    PubMed  CAS  Google Scholar 

  • Kuhn DM, Arthur RE Jr (1997) Inactivation of tryptophan hydroxylase by nitric oxide: enhancement by tetrahydrobiopterin. J Neurochem 68:1495–1502

    PubMed  CAS  Google Scholar 

  • Kuhn DM, Geddes TJ (1999) Peroxynitrite inactivates tryptophan hydroxylase via sulfhydryl oxidation. Coincident nitration of enzyme tyrosyl residues has minimal impact on catalytic activity. J Biol Chem 274:29726–29732 doi:10.1074/jbc.274.42.29726

    PubMed  CAS  Google Scholar 

  • Kuhn DM, Geddes TJ (2000) Molecular footprints of neurotoxic amphetamine action. Ann N Y Acad Sci 914:92–103

    PubMed  CAS  Google Scholar 

  • Kuhn DM, Aretha CW, Geddes TJ (1999) Peroxynitrite inactivation of tyrosine hydroxylase: mediation by sulfhydryl oxidation, not tyrosine nitration. J Neurosci 19:10289–10294

    PubMed  CAS  Google Scholar 

  • Kuhn DM, Francescutti-Verbeem DM, Thomas DM (2006) Dopamine quinones activate microglia and induce a neurotoxic gene expression profile: relationship to methamphetamine-induced nerve ending damage. Ann N Y Acad Sci 1074:31–41 doi:10.1196/annals.1369.003

    PubMed  CAS  Google Scholar 

  • Ladenheim B, Krasnova IN, Deng X, Oyler JM, Polettini A, Moran TH et al (2000) Methamphetamine-induced neurotoxicity is attenuated in transgenic mice with a null mutation for interleukin-6. Mol Pharmacol 58:1247–1256

    PubMed  CAS  Google Scholar 

  • Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364:535–537 doi:10.1038/364535a0

    PubMed  CAS  Google Scholar 

  • LaVoie MJ, Hastings TJ (1999) Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extra cellular dopamine. J Neurosci 19:1484–1491

    PubMed  CAS  Google Scholar 

  • LaVoie MJ, Card JP, Hastings TG (2004) Microglial activation precedes dopamine terminal pathology in methamphetamine-induced neurotoxicity. Exp Neurol 187:47–57 doi:10.1016/j.expneurol.2004.01.010

    PubMed  CAS  Google Scholar 

  • Lazarewicz JW, Wroblewski JT, Palmer ME, Costa E (1988) Activation of N-methyl-d-aspartate-sensitive glutamate receptors stimulates arachidonic acid release in primary cultures of cerebellar granule cells. Neuropharmacology 27:765–769 doi:10.1016/0028-3908(88)90088-3

    PubMed  CAS  Google Scholar 

  • Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330:613–622 doi:10.1056/NEJM199403033300907

    PubMed  CAS  Google Scholar 

  • Liu X, Wu JY, Zhou F, Sun XL, Yao HH, Yang Y et al (2006) The regulation of rotenone-induced inflammatory factor production by ATP-sensitive potassium channel expressed in BV-2 cells. Neurosci Lett 394:131–135 doi:10.1016/j.neulet.2005.10.018

    PubMed  CAS  Google Scholar 

  • Lo EH, Wang X, Cuzner ML (2002) Extracellular proteolysis in brain injury and inflammation: role for plasminogen activators and matrix metalloproteinases. J Neurosci Res 69:1–9 doi:10.1002/jnr.10270

    PubMed  CAS  Google Scholar 

  • Marek GJ, Vosmer G, Seiden LS (1990) Dopamine uptake inhibitors block long-term neurotoxic effects of methamphetamine upon dopaminergic neurons. Brain Res 513:274–279 doi:10.1016/0006-8993(90)90467-P

    PubMed  CAS  Google Scholar 

  • Mark KA, Soghomonian JJ, Yamamoto BK (2004) High-dose methamphetamine acutely activates the striatonigral pathway to increase striatal glutamate and mediate long-term dopamine toxicity. J Neurosci 24:11449–11456 doi:10.1523/JNEUROSCI.3597-04.2004

    PubMed  CAS  Google Scholar 

  • McCann UD, Wong DF, Yokoi F, Villemagne V, Dannals RF, Ricaurte GA (1998) Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C]WIN-35,428. J Neurosci 18:8417–8422

    PubMed  CAS  Google Scholar 

  • McCann UD, Mertl M, Eligulashvili V, Ricaurte GA (1999) Cognitive performance in (+/−) 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) users: a controlled study. Psychopharmacology (Berl) 143:417–425 doi:10.1007/s002130050967

    CAS  Google Scholar 

  • McCann UD, Eligulashvili V, Ricaurte GA (2000) (+/−)3,4-Methylenedioxymethamphetamine (‘ecstasy’)-induced serotonin neurotoxicity: clinical studies. Neuropsychobiology 42:11–16 doi:10.1159/000026665

    PubMed  CAS  Google Scholar 

  • McCann UD, Szabo Z, Seckin E, Rosenblatt P, Mathews WB, Ravert HT et al (2005) Quantitative PET studies of the serotonin transporter in MDMA users and controls using [11C]McN5652 and [11C]DASB. Neuropsychopharmacology 30:1741–1750 doi:10.1038/sj.npp.1300736

    PubMed  CAS  Google Scholar 

  • McCann UD, Kuwabara H, Kumar A, Palermo M, Abbey R, Brasic J et al (2008) Persistent cognitive and dopamine transporter deficits in abstinent methamphetamine users. Synapse 62:91–100 doi:10.1002/syn.20471

    PubMed  CAS  Google Scholar 

  • Mizoguchi H, Yamada K, Mouri A, Niwa M, Mizuno T, Noda Y et al (2007a) Role of matrix metalloproteinase and tissue inhibitor of MMP in methamphetamine-induced behavioral sensitization and reward: implications for dopamine receptor down-regulation and dopamine release. J Neurochem 102:1548–1560 doi:10.1111/j.1471-4159.2007.04623.x

    PubMed  CAS  Google Scholar 

  • Mizoguchi H, Yamada K, Niwa M, Mouri A, Mizuno T, Noda Y et al (2007b) Reduction of methamphetamine-induced sensitization and reward in matrix metalloproteinase-2 and -9-deficient mice. J Neurochem 100:1579–1588

    PubMed  CAS  Google Scholar 

  • Mizoguchi H, Yamada K, Nabeshima T (2008) Neuropsychotoxicity of abused drugs: involvement of matrix metalloproteinase-2 and -9 and tissue inhibitor of matrix metalloproteinase-2 in methamphetamine-induced behavioral sensitization and reward in rodents. J Pharmacol Sci 106:9–14 doi:10.1254/jphs.FM0070139

    PubMed  CAS  Google Scholar 

  • Moss DW, Bates TE (2001) Activation of murine microglial cell lines by lipopolysaccharide and interferon-gamma causes NO-mediated decreases in mitochondrial and cellular function. Eur J Neurosci 13:529–538 doi:10.1046/j.1460-9568.2001.01418.x

    PubMed  CAS  Google Scholar 

  • Mun-Bryce S, Rosenberg GA (1998) Gelatinase B modulates selective opening of the blood–brain barrier during inflammation. Am J Physiol 274:R1203–R1211

    PubMed  CAS  Google Scholar 

  • Nagy V, Bozdagi O, Matynia A, Balcerzyk M, Okulski P, Dzwonek J et al (2006) Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. J Neurosci 26:1923–1934 doi:10.1523/JNEUROSCI.4359-05.2006

    PubMed  CAS  Google Scholar 

  • Nakajima A, Yamada K, Nagai T, Uchiyama T, Miyamoto Y, Mamiya T et al (2004) Role of tumor necrosis factor-alpha in methamphetamine-induced drug dependence and neurotoxicity. J Neurosci 24:2212–2225 doi:10.1523/JNEUROSCI.4847-03.2004

    PubMed  CAS  Google Scholar 

  • Nash JF, Yamamoto BK (1992) Methamphetamine neurotoxicity and striatal glutamate release: comparison to 3,4-methylenedioxymethamphetamine. Brain Res 581:237–243 doi:10.1016/0006-8993(92)90713-J

    PubMed  CAS  Google Scholar 

  • Nixdorf WL, Burrows KB, Gudelsky GA, Yamamoto BK (2001) Enhancement of 3,4-methylenedioxymethamphetamine neurotoxicity by the energy inhibitor malonate. J Neurochem 77:647–654 doi:10.1046/j.1471-4159.2001.00262.x

    PubMed  CAS  Google Scholar 

  • Noble F, Rubira E, Boulanouar M, Palmier B, Plotkine M, Warnet JM et al (2007) Acute systemic inflammation induces central mitochondrial damage and mnesic deficit in adult Swiss mice. Neurosci Lett 424:106–110 doi:10.1016/j.neulet.2007.07.005

    PubMed  CAS  Google Scholar 

  • O’Callaghan JP, Miller DB (1994) Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse. J Pharmacol Exp Ther 270:741–751

    PubMed  CAS  Google Scholar 

  • O’Callaghan JP, Sriram K (2005) Glial fibrillary acidic protein and related glial proteins as biomarkers of neurotoxicity. Expert Opin Drug Saf 4:433–442 doi:10.1517/14740338.4.3.433

    PubMed  CAS  Google Scholar 

  • O’Hearn E, Battaglia G, De Souza EB, Kuhar MJ, Molliver ME (1988) Methylenedioxyamphetamine (MDA) and methylenedioxymethamphetamine (MDMA) cause selective ablation of serotonergic axon terminals in forebrain: immunocytochemical evidence for neurotoxicity. J Neurosci 8:2788–2803

    PubMed  CAS  Google Scholar 

  • Olanow CW (1992) An introduction to the free radical hypothesis in Parkinson’s disease. Ann Neurol 32(Suppl):S2–S9 doi:10.1002/ana.410320703

    PubMed  CAS  Google Scholar 

  • Orio L, O’Shea E, Sanchez V, Pradillo JM, Escobedo I, Camarero J et al (2004) 3,4-Methylenedioxymethamphetamine increases interleukin-1beta levels and activates microglia in rat brain: studies on the relationship with acute hyperthermia and 5-HT depletion. J Neurochem 89:1445–1453 doi:10.1111/j.1471–4159.2004.02443.x

    PubMed  CAS  Google Scholar 

  • O’Shea E, Sanchez V, Orio L, Escobedo I, Green AR, Colado MI (2005) 3,4-Methylenedioxymethamphetamine increases pro-interleukin-1beta production and caspase-1 protease activity in frontal cortex, but not in hypothalamus, of Dark Agouti rats: role of interleukin-1beta in neurotoxicity. Neuroscience 135:1095–1105 doi:10.1016/j.neuroscience.2005.06.084

    PubMed  CAS  Google Scholar 

  • Pontieri FE, Crane AM, Seiden LS, Kleven MS, Porrino LJ (1990) Metabolic mapping of the effects of intravenous methamphetamine administration in freely moving rats. Psychopharmacology (Berl) 102:175–182 doi:10.1007/BF02245919

    CAS  Google Scholar 

  • Pu C, Vorhees CV (1993) Developmental dissociation of methamphetamine-induced depletion of dopaminergic terminals and astrocyte reaction in rat striatum. Brain Res Dev Brain Res 72:325–328 doi:10.1016/0165-3806(93)90201-K

    PubMed  CAS  Google Scholar 

  • Quate L, McBean DE, Ritchie IM, Olverman HJ, Kelly PA (2004) Acute methylenedioxymethamphetamine administration: effects on local cerebral blood flow and glucose utilisation in the Dark Agouti rat. Psychopharmacology (Berl) 173:287–295 doi:10.1007/s00213-004-1784-z

    CAS  Google Scholar 

  • Quinton MS, Yamamoto BK (2006) Causes and consequences of methamphetamine and MDMA toxicity. AAPS J 8:E337–E347 doi:10.1208/aapsj080238

    PubMed  Google Scholar 

  • Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266:4244–4250

    PubMed  CAS  Google Scholar 

  • Ricaurte GA, Schuster CR, Seiden LS (1980) Long-term effects of repeated methylamphetamine administration on dopamine and serotonin neurons in the rat brain: a regional study. Brain Res 193:153–163 doi:10.1016/0006-8993(80)90952-X

    PubMed  CAS  Google Scholar 

  • Ricaurte GA, Guillery RW, Seiden LS, Schuster CR, Moore RY (1982) Dopamine nerve terminal degeneration produced by high doses of methylamphetamine in the rat brain. Brain Res 235:93–103 doi:10.1016/0006-8993(82)90198-6

    PubMed  CAS  Google Scholar 

  • Ricaurte G, Bryan G, Strauss L, Seiden L, Schuster C (1985) Hallucinogenic amphetamine selectively destroys brain serotonin nerve terminals. Science 229:986–988 doi:10.1126/science.4023719

    PubMed  CAS  Google Scholar 

  • Ricaurte GA, Forno LS, Wilson MA, DeLanney LE, Irwin I, Molliver ME et al (1988) (+/−)3,4-Methylenedioxymethamphetamine selectively damages central serotonergic neurons in nonhuman primates. JAMA 260:51–55 doi:10.1001/jama.260.1.51

    PubMed  CAS  Google Scholar 

  • Rocher C, Gardier AM (2001) Effects of repeated systemic administration of d-fenfluramine on serotonin and glutamate release in rat ventral hippocampus: comparison with methamphetamine using in vivo microdialysis. Naunyn Schmiedebergs Arch Pharmacol 363:422–428 doi:10.1007/s002100000381

    PubMed  CAS  Google Scholar 

  • Rosenberg GA, Mun-Bryce S (2004) Matrix metalloproteinases in neuroinflammation and cerebral ischemia. Ernst Schering Res Found Workshop 47:1–16

    PubMed  CAS  Google Scholar 

  • Rosenberg GA, Estrada EY, Dencoff JE, Stetler-Stevenson WG (1995) Tumor necrosis factor-alpha-induced gelatinase B causes delayed opening of the blood-brain barrier: an expanded therapeutic window. Brain Res 703:151–155 doi:10.1016/0006-8993(95)01089-0

    PubMed  CAS  Google Scholar 

  • Rosenberg GA, Cunningham LA, Wallace J, Alexander S, Estrada EY, Grossetete M et al (2001) Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain: activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures. Brain Res 893:104–112 doi:10.1016/S0006-8993(00)03294-7

    PubMed  CAS  Google Scholar 

  • Rothman RB, Baumann MH (2003) Monoamine transporters and psychostimulant drugs. Eur J Pharmacol 479:23–40 doi:10.1016/j.ejphar.2003.08.054

    PubMed  CAS  Google Scholar 

  • Ryan LJ, Martone ME, Linder JC, Groves PM (1988) Continuous amphetamine administration induces tyrosine hydroxylase immunoreactive patches in the adult rat neostriatum. Brain Res Bull 21:133–137 doi:10.1016/0361-9230(88)90129-3

    PubMed  CAS  Google Scholar 

  • Ryu JK, Nagai A, Kim J, Lee MC, McLarnon JG, Kim SU (2003) Microglial activation and cell death induced by the mitochondrial toxin 3-nitropropionic acid: in vitro and in vivo studies. Neurobiol Dis 12:121–132 doi:10.1016/S0969-9961(03)00002-0

    PubMed  CAS  Google Scholar 

  • Sanchez V, Camarero J, O’Shea E, Green AR, Colado MI (2003) Differential effect of dietary selenium on the long-term neurotoxicity induced by MDMA in mice and rats. Neuropharmacology 44:449–461 doi:10.1016/S0028-3908(02)00411-2

    PubMed  CAS  Google Scholar 

  • Sattler R, Tymianski M (2000) Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med 78:3–13 doi:10.1007/s001090000077

    PubMed  CAS  Google Scholar 

  • Sattler R, Tymianski M (2001) Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol 24:107–129 doi:10.1385/MN:24:1-3:107

    PubMed  CAS  Google Scholar 

  • Schmidt CJ, Ritter JK, Sonsalla PK, Hanson GR, Gibb JW (1985) Role of dopamine in the neurotoxic effects of methamphetamine. J Pharmacol Exp Ther 233:539–544

    PubMed  CAS  Google Scholar 

  • Schmidt CJ, Black CK, Taylor VL (1990) Antagonism of the neurotoxicity due to a single administration of methylenedioxymethamphetamine. Eur J Pharmacol 181:59–70 doi:10.1016/0014-2999(90)90245-2

    PubMed  CAS  Google Scholar 

  • Schmidt CJ, Black CK, Taylor VL (1991) l-DOPA potentiation of the serotonergic deficits due to a single administration of 3,4-methylenedioxymethamphetamine, p-chloroamphetamine or methamphetamine to rats. Eur J Pharmacol 203:41–49 doi:10.1016/0014-2999(91)90788-R

    PubMed  CAS  Google Scholar 

  • Schmued LC (2003) Demonstration and localization of neuronal degeneration in the rat forebrain following a single exposure to MDMA. Brain Res 974:127–133 doi:10.1016/S0006-8993(03)02563-0

    PubMed  CAS  Google Scholar 

  • Schulz JB, Henshaw DR, MacGarvey U, Beal MF (1996) Involvement of oxidative stress in 3-nitropropionic acid neurotoxicity. Neurochem Int 29:167–171 doi:10.1016/0197-0186(95)00122-0

    PubMed  CAS  Google Scholar 

  • Seiden LS, Fischman MW, Schuster CR (1976) Long-term methamphetamine induced changes in brain catecholamines in tolerant rhesus monkeys. Drug Alcohol Depend 1:215–219 doi:10.1016/0376-8716(76)90030-2

    PubMed  CAS  Google Scholar 

  • Seiden LS, Commins DL, Vosmer G, Axt K, Marek G (1988) Neurotoxicity in dopamine and 5-hydroxytryptamine terminal fields: a regional analysis in nigrostriatal and mesolimbic projections. Ann N Y Acad Sci 537:161–172 doi:10.1111/j.1749-6632.1988.tb42104.x

    PubMed  CAS  Google Scholar 

  • Sekine Y, Ouchi Y, Takei N, Yoshikawa E, Nakamura K, Futatsubashi M et al (2006) Brain serotonin transporter density and aggression in abstinent methamphetamine abusers. Arch Gen Psychiatry 63:90–100 doi:10.1001/archpsyc.63.1.90

    PubMed  CAS  Google Scholar 

  • Shankaran M, Yamamoto BK, Gudelsky GA (1999) Mazindol attenuates the 3,4-methylenedioxymethamphetamine-induced formation of hydroxyl radicals and long-term depletion of serotonin in the striatum. J Neurochem 72:2516–2522 doi:10.1046/j.1471-4159.1999.0722516.x

    PubMed  CAS  Google Scholar 

  • Shen KP, Lo YC, Yang RC, Liu HW, Chen IJ, Wu BN (2005) Antioxidant eugenosedin-A protects against lipopolysaccharide-induced hypotension, hyperglycaemia and cytokine immunoreactivity in rats and mice. J Pharm Pharmacol 57:117–125 doi:10.1211/0022357055137

    PubMed  CAS  Google Scholar 

  • Sherer TB, Betarbet R, Kim JH, Greenamyre JT (2003) Selective microglial activation in the rat rotenone model of Parkinson’s disease. Neurosci Lett 341:87–90 doi:10.1016/S0304-3940(03)00172-1

    PubMed  CAS  Google Scholar 

  • Siman R, Noszek JC (1988) Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron 1:279–287 doi:10.1016/0896-6273(88)90076-1

    PubMed  CAS  Google Scholar 

  • Sprague JE, Nichols DE (1995a) Inhibition of MAO-B protects against MDMA-induced neurotoxicity in the striatum. Psychopharmacology (Berl) 118:357–359 doi:10.1007/BF02245967

    CAS  Google Scholar 

  • Sprague JE, Nichols DE (1995b) The monoamine oxidase-B inhibitor l-deprenyl protects against 3,4-methylenedioxymethamphetamine-induced lipid peroxidation and long-term serotonergic deficits. J Pharmacol Exp Ther 273:667–673

    PubMed  CAS  Google Scholar 

  • Sriram K, Miller DB, O’Callaghan JP (2006) Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-alpha. J Neurochem 96:706–718 doi:10.1111/j.1471-4159.2005.03566.x

    PubMed  CAS  Google Scholar 

  • Stamler JS, Hausladen A (1998) Oxidative modifications in nitrosative stress. Nat Struct Biol 5:247–249 doi:10.1038/nsb0498-247

    PubMed  CAS  Google Scholar 

  • Staszewski RD, Yamamoto BK (2006) Methamphetamine-induced spectrin proteolysis in the rat striatum. J Neurochem 96:1267–1276 doi:10.1111/j.1471-4159.2005.03618.x

    PubMed  CAS  Google Scholar 

  • Stephans SE, Whittingham TS, Douglas AJ, Lust WD, Yamamoto BK (1998) Substrates of energy metabolism attenuate methamphetamine-induced neurotoxicity in striatum. J Neurochem 71:613–621

    Article  PubMed  CAS  Google Scholar 

  • Stokes AH, Hastings TG, Vrana KE (1999) Cytotoxic and genotoxic potential of dopamine. J Neurosci Res 55:659–665 doi:10.1002/(SICI)1097-4547(19990315)55:6<659::AID-JNR1>3.0.CO;2-C

    PubMed  CAS  Google Scholar 

  • Stoll G, Jander S (1999) The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 58:233–247 doi:10.1016/S0301-0082(98)00083-5

    PubMed  CAS  Google Scholar 

  • Stone DM, Stahl DC, Hanson GR, Gibb JW (1986) The effects of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) on monoaminergic systems in the rat brain. Eur J Pharmacol 128:41–48 doi:10.1016/0014-2999(86)90555-8

    PubMed  CAS  Google Scholar 

  • Stone DM, Johnson M, Hanson GR, Gibb JW (1988) Role of endogenous dopamine in the central serotonergic deficits induced by 3,4-methylenedioxymethamphetamine. J Pharmacol Exp Ther 247:79–87

    PubMed  CAS  Google Scholar 

  • Stone DM, Johnson M, Hanson GR, Gibb JW (1989) Acute inactivation of tryptophan hydroxylase by amphetamine analogs involves the oxidation of sulfhydryl sites. Eur J Pharmacol 172:93–97 doi:10.1016/0922-4106(89)90048-5

    PubMed  CAS  Google Scholar 

  • Straiko MM, Coolen LM, Zemlan FP, Gudelsky GA (2007) The effect of amphetamine analogs on cleaved microtubule-associated protein-tau formation in the rat brain. Neuroscience 144:223–231 doi:10.1016/j.neuroscience.2006.08.073

    PubMed  CAS  Google Scholar 

  • Streit WJ, Walter SA, Pennell NA (1999) Reactive microgliosis. Prog Neurobiol 57:563–581 doi:10.1016/S0301-0082(98)00069-0

    PubMed  CAS  Google Scholar 

  • Sulzer D, Sonders MS, Poulsen NW, Galli A (2005) Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol 75:406–433 doi:10.1016/j.pneurobio.2005.04.003

    PubMed  CAS  Google Scholar 

  • Szklarczyk A, Lapinska J, Rylski M, McKay RD, Kaczmarek L (2002) Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus. J Neurosci 22:920–930

    PubMed  CAS  Google Scholar 

  • Thomas DM, Kuhn DM (2005a) Cyclooxygenase-2 is an obligatory factor in methamphetamine-induced neurotoxicity. J Pharmacol Exp Ther 313:870–876 doi:10.1124/jpet.104.080242

    PubMed  CAS  Google Scholar 

  • Thomas DM, Kuhn DM (2005b) MK-801 and dextromethorphan block microglial activation and protect against methamphetamine-induced neurotoxicity. Brain Res 1050:190–198 doi:10.1016/j.brainres.2005.05.049

    PubMed  CAS  Google Scholar 

  • Thomas DM, Dowgiert J, Geddes TJ, Francescutti-Verbeem D, Liu X, Kuhn DM (2004) Microglial activation is a pharmacologically specific marker for the neurotoxic amphetamines. Neurosci Lett 367:349–354 doi:10.1016/j.neulet.2004.06.065

    PubMed  CAS  Google Scholar 

  • Thompson PM, Hayashi KM, Simon SL, Geaga JA, Hong MS, Sui Y et al (2004) Structural abnormalities in the brains of human subjects who use methamphetamine. J Neurosci 24:6028–6036 doi:10.1523/JNEUROSCI.0713-04.2004

    PubMed  CAS  Google Scholar 

  • Volterra A, Trotti D, Tromba C, Floridi S, Racagni G (1994) Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J Neurosci 14:2924–2932

    PubMed  CAS  Google Scholar 

  • Wagner GC, Ricaurte GA, Seiden LS, Schuster CR, Miller RJ, Westley J (1980) Long-lasting depletions of striatal dopamine and loss of dopamine uptake sites following repeated administration of methamphetamine. Brain Res 181:151–160 doi:10.1016/0006-8993(80)91265-2

    PubMed  CAS  Google Scholar 

  • Wagner GC, Carelli RM, Jarvis MF (1985) Pretreatment with ascorbic acid attenuates the neurotoxic effects of methamphetamine in rats. Res Commun Chem Pathol Pharmacol 47:221–228

    PubMed  CAS  Google Scholar 

  • Warren MW, Kobeissy FH, Liu MC, Hayes RL, Gold MS, Wang KK (2005) Concurrent calpain and caspase-3 mediated proteolysis of alpha II-spectrin and tau in rat brain after methamphetamine exposure: a similar profile to traumatic brain injury. Life Sci 78:301–309 doi:10.1016/j.lfs.2005.04.058

    PubMed  CAS  Google Scholar 

  • Warren MW, Zheng W, Kobeissy FH, Cheng LM, Hayes RL, Gold MS et al (2007) Calpain- and caspase-mediated alpha II-spectrin and tau proteolysis in rat cerebrocortical neuronal cultures after ecstasy or methamphetamine exposure. Int J Neuropsychopharmacol 10:479–489 doi:10.1017/S1461145706007061

    PubMed  CAS  Google Scholar 

  • Wells GM, Catlin G, Cossins JA, Mangan M, Ward GA, Miller KM et al (1996) Quantitation of matrix metalloproteinases in cultured rat astrocytes using the polymerase chain reaction with a multi-competitor cDNA standard. Glia 18:332–340 doi:10.1002/(SICI)1098-1136(199612)18:4<332::AID-GLIA7>3.0.CO;2-Z

    PubMed  CAS  Google Scholar 

  • Woolverton WL, Ricaurte GA, Forno LS, Seiden LS (1989) Long-term effects of chronic methamphetamine administration in rhesus monkeys. Brain Res 486:73–78 doi:10.1016/0006-8993(89)91279-1

    PubMed  CAS  Google Scholar 

  • Yamaguchi T, Kuraishi Y, Minami M, Nakai S, Hirai Y, Satoh M (1991) Methamphetamine-induced expression of interleukin-1 beta mRNA in the rat hypothalamus. Neurosci Lett 128:90–92 doi:10.1016/0304-3940(91)90766-M

    PubMed  CAS  Google Scholar 

  • Yamamoto BK, Zhu W (1998) The effects of methamphetamine on the production of free radicals and oxidative stress. J Pharmacol Exp Ther 287:107–114

    PubMed  CAS  Google Scholar 

  • Yong VW, Krekoski CA, Forsyth PA, Bell R, Edwards DR (1998) Matrix metalloproteinases and diseases of the CNS. Trends Neurosci 21:75–80 doi:10.1016/S0166-2236(97)01169-7

    PubMed  CAS  Google Scholar 

  • Yong VW, Power C, Forsyth P, Edwards DR (2001) Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci 2:502–511 doi:10.1038/35081571

    PubMed  CAS  Google Scholar 

  • Zhang L, Shirayama Y, Shimizu E, Iyo M, Hashimoto K (2006) Protective effects of minocycline on 3,4-methylenedioxymethamphetamine-induced neurotoxicity in serotonergic and dopaminergic neurons of mouse brain. Eur J Pharmacol 544:1–9 doi:10.1016/j.ejphar.2006.05.047

    PubMed  CAS  Google Scholar 

  • Zhang X, Dong F, Mayer GE, Bruch DC, Ren J, Culver B (2007) Selective inhibition of cyclooxygenase-2 exacerbates methamphetamine-induced dopamine depletion in the striatum in rats. Neuroscience 150:950–958 doi:10.1016/j.neuroscience.2007.09.059

    PubMed  CAS  Google Scholar 

  • Zujovic V, Schussler N, Jourdain D, Duverger D, Taupin V (2001) In vivo neutralization of endogenous brain fractalkine increases hippocampal TNF alpha and 8-isoprostane production induced by intracerebroventricular injection of LPS. J Neuroimmunol 115:135–143 doi:10.1016/S0165-5728(01)00259-4

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan K. Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, B.K., Raudensky, J. The Role of Oxidative Stress, Metabolic Compromise, and Inflammation in Neuronal Injury Produced by Amphetamine-Related Drugs of Abuse. J Neuroimmune Pharmacol 3, 203–217 (2008). https://doi.org/10.1007/s11481-008-9121-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-008-9121-7

Keywords

Navigation