Skip to main content

Advertisement

Log in

Adequate Antigen Availability: A Key Issue for Novel Approaches to Tumor Vaccination and Tumor Immunotherapy

  • Perspective
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

A crucial parameter for activation of the anti-tumor immune response is an adequate antigen availability (AAA) defined here as the optimal tumor antigen dose and related antigen processing and MHC-II-restricted presentation necessary to efficiently trigger tumor-specific TH cells. We will discuss two distinct experimental systems: a) a preventive anti-tumor vaccination system; b) a therapy-induced anti-tumor vaccination approach. In the first case tumor cells are rendered constitutively MHC-II+ by transfecting them with the MHC-II transcriptional activator CIITA. Here AAA is generated by the function of tumor’s newly expressed MHC-II molecules to present tumor-associated antigens to tumor-specific TH cells. In the second case, AAA is generated by treating established tumors with neovasculature-targeted TNFα. In conjuction with Melphalan, targeted TNFα delivery produces extensive areas of tumor necrosis that generate AAA capable of optimally activate tumor-specific TH cells which in turn activate CTL immune effectors. In both experimental systems tumor rejection and persistent and long-lived TH cell anti-tumor memory, responsible of defending the animals from subsequent challenges with tumor cells, are achieved. Based on these and other investigators’ results we propose that AAA is a key element for triggering adaptive immune functions resulting in subversion from a pro-tumor to an anti-tumor microenvironment, tumor rejection and acquisition of anti-tumor immune memory. Hypotheses of neuro-immune networks involved in these approaches are discussed. These considerations are important also for the comprehension of how chemotherapy and/or radiation therapies may help to block and/or to eradicate the tumor and for the construction of suitable anti-tumor vaccine strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Accolla RS, Carra G, Buchegger F, Carrel S, Mach J-P (1985a) The human Ia-associated invariant chain is synthesized in Ia-negative variants and is not expressed on the cell surface of both Ia-negative and Ia-positive parental cells. J Immunol 134:3265–3271

    PubMed  CAS  Google Scholar 

  • Accolla RS, Jotterand-Bellomo M, Scarpellino L, Maffei A, Carra G, Guardiola J (1986) Air-1, a newly found locus on mouse chromosome 16 encoding a trans-acting activator factor for MHC class II gene expression. J Exp Med 164:369–374

    Article  PubMed  CAS  Google Scholar 

  • Accolla RS, Scarpellino L, Carra G, Guardiola J (1985b) Reactivation by a trans-acting factor of human major histocompatibility complex Ia gene expression in interspecies hybrids between an Ia-negative human B-cell variant and an Ia-positive mouse B-cell lymphoma. Proc Natl Acad Sci USA 82:5145–5149

    Article  PubMed  CAS  Google Scholar 

  • Accolla RS, Scarpellino L, Carra G, Guardiola J (1985c) Trans-acting element(s) operating across species barriers positively regulate the expression of major histocompatibility complex class II genes. J Exp Med 162:1117–1133

    Article  PubMed  CAS  Google Scholar 

  • Balza E, Carnemolla B, Mortara L, Castellani P, Soncini D, Accolla RS, Borsi L (2010) Therapy-induced antitumor vaccination in neuroblastomas by the combined targeting of IL-2 and TNFalpha. Int J Cancer 127:101–110

    Article  PubMed  CAS  Google Scholar 

  • Balza E, Mortara L, Sassi F, Monteghirfo S, Carnemolla B, Castellani P, Neri D, Accolla RS, Zardi L, Borsi L (2006) Targeted delivery of tumor necrosis factor-a to tumor vessels induces a therapeutic T cell-mediated immune response that protects the host against syngeneic tumors of different histologic origin. Clin Cancer Res 12:2575–2582

    Article  PubMed  CAS  Google Scholar 

  • Besser MJ, Ganor Y, Levite M (2005) Dopamine by itself activates either D2, D3 or D1/D5 dopaminergic receptors in normal human T-cells and triggers the selective secretion of either IL-10, TNFalpha or both. J Neuroimmunol 169:161–171

    Article  PubMed  CAS  Google Scholar 

  • Borsi L, Balza E, Carnemolla B, Sassi F, Castellani P, Berndt A, Kosmehl H, Biro A, Siri A, Orecchia P, Grassi J, Neri D, Zardi L (2003) Selective targeted delivery of TNFalpha to tumor blood vessels. Blood 102:4384–4392

    Article  PubMed  CAS  Google Scholar 

  • Chicz RM, Urban RG, Gorga JC, Vignali DA, Lane WS, Strominger JL (1993) Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J Exp Med 178:27–47

    Article  PubMed  CAS  Google Scholar 

  • Cosentino M, Fietta AM, Ferrari M, Rasini E, Bombelli R, Carcano E, Saporiti F, Meloni F, Marino F, Lecchini S (2007) Human CD4 + CD25+ regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop. Blood 109:632–642

    Article  PubMed  CAS  Google Scholar 

  • Cosentino M, Marino F, Bombelli R, Ferrari M, Lecchini S, Frigo G (2003) Unravelling dopamine (and catecholamine) physiopharmacology in lymphocytes: open questions. Trends Immunol 24:581–583

    Article  PubMed  CAS  Google Scholar 

  • De Keyser J, Laureys G, Demol F, Wilczak N, Mostert J, Clinckers R (2010) Astrocytes as potential targets to suppress inflammatory demyelinating lesions in multiple sclerosis. Neurochem Int 57:446–450

    Article  PubMed  Google Scholar 

  • De Plaen E, Lurquin C, Lethe B, van der Bruggen P, Brichard V, Renauld JC, Coulie P, Van Pel A, Boon T (1997) Identification of genes coding for tumor antigens recognized by cytolytic T lymphocytes. Methods 12:125–142

    Article  PubMed  Google Scholar 

  • de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6:24–37

    Article  PubMed  Google Scholar 

  • Dranoff G (2004) Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 4:11–22

    Article  PubMed  CAS  Google Scholar 

  • Dunn JP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360

    Article  PubMed  CAS  Google Scholar 

  • Frangione V, Mortara L, Castellani P, De Lerma BA, Accolla RS (2010) CIITA-driven MHC-II positive tumor cells: preventive vaccines and superior generators of anti-tumor CD4+ T lymphocytes for immunotherapy. Int J Cancer 127:1614–1624

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Lora A, Algarra I, Garrido F (2003) MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol 195:346–355

    Article  PubMed  CAS  Google Scholar 

  • Garrido F, Algarra I, García-Lora AM (2010) The escape of cancer from T lymphocytes: immunoselection of MHC class I loss variants harboring structural-irreversible “hard” lesions. Cancer Immunol Immunother 59:1601–1606

    Article  PubMed  CAS  Google Scholar 

  • Germain RN, Margulies DH (1993) The biochemistry and cellular biology of antigen processing and presentation. Annu Rev Immunol 11:403–450

    Article  PubMed  CAS  Google Scholar 

  • Haen SP, Pereira PL, Salih HR, Rammensee HG, Gouttefangeas C (2011) More than just tumor destruction: immunomodulation by thermal ablation of cancer. Clin Develop Immunol 2011:160250

    Google Scholar 

  • Hanahan D, Weinberg R (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  • Harton JA, Ting JPY (2000) Class II transactivator: mastering the art of major histocompatibility complex expression. Mol Cell Biol 20:6185–6194

    Article  PubMed  CAS  Google Scholar 

  • Huang AY, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H (1994) Role of bone marrow-derived cells in presenting MHC class-I restricted tumor antigens. Science 264:961–965

    Article  PubMed  CAS  Google Scholar 

  • Hui K, Grosveld F, Festenstein H (1984) Rejection of transplantable AKR leukemia cells following DNA-mediated cell transformation. Nature 311:750–752

    Article  PubMed  CAS  Google Scholar 

  • Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll DM, Levitsky H (1998) The central role of CD4+ T cells in the antitumor immune response. J Exp Med 188:2357–2368

    Article  PubMed  CAS  Google Scholar 

  • Jaraquemada D, Marti M, Long EO (1990) An endogenous processing pathway in vaccinia virus-infected cells for presentation of cytosolic antigens to MHC class II-restricted T cells. J Exp Med 172:947–954

    Article  PubMed  CAS  Google Scholar 

  • Jochems C, Schlom J (2011) Tumor-infiltrating immune cells and prognosis: the potential link between conventional cancer therapy and immunity. Exp Biol Med 236:567–579

    Article  CAS  Google Scholar 

  • Kageshita T, Hirai S, Ono T, Hicklin DJ, Ferrone S (1999) Down-regulation of HLA class I antigen-processing molecules in malignant melanoma: association with disease progression. Am J Pathol 154:745–754

    Article  PubMed  CAS  Google Scholar 

  • Lake RA, Robinson BWS (2005) Immunotherapy and chemotherapy- a practical partnership. Nat Rev Cancer 5:397–404

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Moran JP, Fenton BM, Koch CJ, Frelinger JG, Keng PC, Lord EM (2000) Alteration of tumour response to radiation by interleukin-2 gene transfer. Br J Cancer 82:937–944

    Article  PubMed  CAS  Google Scholar 

  • Liao YP, Wang CC, Butterfield LH, Economou JS, Ribas A, Meng WS, Iwamoto KS, McBride WH (2004) Ionizing radiation affects human MART-1 melanoma antigen processing and presentation by dendritic cells. J Immunol 173:2462–2469

    PubMed  CAS  Google Scholar 

  • Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM (2005) Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol 174:7516–7523

    PubMed  CAS  Google Scholar 

  • Makela O, Mitchison NA (1965) The effect of antigen dosage on the response of adoptively transferred cells. Immunology 8:549–556

    PubMed  CAS  Google Scholar 

  • Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22:231–237

    Article  PubMed  CAS  Google Scholar 

  • Meazza R, Comes A, Orengo AM, Ferrini S, Accolla RS (2003) Tumor rejection by gene transfer of the MHC class II transactivator in murine mammary adenocarcinoma cells. Eur J Immunol 33:1183–1192

    Article  PubMed  CAS  Google Scholar 

  • Mitchison NA (1964) Induction of immunological paralysis in two zones of dosage. Proc Royal Soc London 161:275–292

    Article  CAS  Google Scholar 

  • Mortara L, Balza E, Sassi F, Castellani P, Carnemolla B, De Lerma Barbaro A, Fossati S, Tosi G, Accolla RS, Borsi L (2007) Therapy-induced antitumor vaccination by targeting tumor necrosis factor-a to tumor vessels in combination with melphalan. Eur J Immunol 37:3381–3392

    Article  PubMed  CAS  Google Scholar 

  • Mortara L, Castellani P, Meazza R, Tosi G, De Lerma BA, Procopio FA, Comes A, Zardi L, Ferrini S, Accolla RS (2006) CIITA-induced MHC class II expression in mammary adenocarcinoma leads to a Th1 polarization of the tumor microenvironment, tumor rejection, and specific antitumor memory. Clin Cancer Res 12:3435–3443

    Article  PubMed  CAS  Google Scholar 

  • Mortara L, Frangione V, Castellani P, De Lerma BA, Accolla RS (2009) Irradiated CIITA-positive mammary adenocarcinoma cells act as a potent anti-tumor-preventive vaccine by inducing tumor-specific CD4+ T cell priming and CD8+ T cell effector functions. Int Immunol 21:655–665

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa H, Sakaguchi S (2010) Regulatory T cells in tumor immunity. Int J Cancer 127:759–767

    PubMed  CAS  Google Scholar 

  • Ossendorp F, Mengede E, Camps M, Filius R, Melief CJ (1998) Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J Exp Med 187:693–702

    Article  PubMed  CAS  Google Scholar 

  • Papadia F, Basso V, Patuzzo R, Maurichi A, Di Florio A, Zardi L, Ventura E, González-Iglesias R, Lovato V, Giovannoni L, Tasciotti A, Neri D, Santinami M, Menssen HD, De Cian F (2012) Isolated limb perfusion with the tumor-targeting human monoclonal antibody-cytokine fusion protein L19-TNF plus melphalan and mild hyperthermia in patients with locally advanced extremity melanoma. J Surg Oncol. doi:10.1002/jso.23168

  • Pardoll DM, Topalian SL (1998) The role of CD4+ T cell responses in anti-tumor immunity. Curr Opin Immunol 10:588–594

    Article  PubMed  CAS  Google Scholar 

  • Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK, Camphausen K, Luiten RM, de Ru AH, Neijssen J, Griekspoor A, Mesman E, Verreck FA, Spits H, Schlom J, van Veelen P, Neefjes JJ (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203:1259–1271

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME (2008) Adoptive cell therapy: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8:299–308

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915

    Article  PubMed  CAS  Google Scholar 

  • Rudensky A, Preston-Hurlburt P, Hong SC, Barlow A, Janeway CAJ (1991) Sequence analysis of peptides bound to MHC class II molecules. Nature 353:622–627

    Article  PubMed  CAS  Google Scholar 

  • Ruffell B, DeNardo DG, Affara NI, Coussens LM (2010) Lymphocytes in cancer development: polarization towards pro-tumor immunity. Cytokine Growth Factor Rev 21:3–10

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164

    PubMed  CAS  Google Scholar 

  • Sartoris S, Valle MT, De Lerma Barbaro A, Tosi G, Cestari T, D’Agostino A, MA M, Manca F, Accolla RS (1998) HLA class II expression in uninducible hepatocarcinoma cells after trasfection of the AIR-1 gene product CIITA. Acquisition of antigen processing and presentation capacity. J Immunol 161:814–820

    PubMed  CAS  Google Scholar 

  • Schimd D, Pypaert M, Munz C (2007) Antigen-loading compartments for major histocompatibility class II molecules continuously receive input from autophagosomes. Immunity 26:79–92

    Article  Google Scholar 

  • Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG, Rimoldi M, Biswas SK, Allavena P, Mantovani A (2008) Macrophage polarization in tumour progression. Sem Cancer Biol 18:349–355

    Article  CAS  Google Scholar 

  • Soos JM, Morrow J, Ashley TA, Szente BE, Bikoff EK, Zamvil SS (1998) Astrocytes express elements of the class II endocytic pathway and process central nervous system autoantigen for presentation to encephalitogenic T cells. J Immunol 161:5959–5966

    PubMed  CAS  Google Scholar 

  • Steimle V, Otten LA, Zufferey M, Mach B (1993) Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or Bare Lymphocyte Syndrome). Cell 75:135–146

    PubMed  CAS  Google Scholar 

  • Takeshima T, Chamoto K, Wakita D, Ohkuri T, Togashi Y, Shirato H, Kitamura H, Nishimura T (2010) Local radiation therapy inhibits tumor growth through the generation of tumor-specific CTL: its potentiation by combination with Th1 cell therapy. Cancer Res 70:2697–2706

    Article  PubMed  CAS  Google Scholar 

  • Vesely M, Kershaw M, Schreiber R, Smyth M (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271

    Article  PubMed  CAS  Google Scholar 

  • Yamini B, Yu X, Pytel P, Galanopoulos N, Rawlani V, Veerapong J, Bickenbach K, Weichselbaum RR (2007) Adenovirally delivered tumor necrosis factor-alpha improves the antiglioma efficacy of concomitant radiation and temozolomide therapy. Clin Cancer Res 13:6217–6223

    Article  PubMed  CAS  Google Scholar 

  • Zinkernagel RM, Ehl S, Aichele P, Oehen S, Kundig TM, Hengartner H (1997) Antigen localisation regulates immune responses in a dose- and time-dependent fashion: a geographical view of immune reactivity. Immunol Rev 156:199–209

    Article  PubMed  CAS  Google Scholar 

  • Zitvogel L, Kepp O, Kroemer G (2011) Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol 8:151–160

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the following grants to RSA: Associazione Italiana Ricerca sul Cancro “New strategies of tumor vaccination and immunotherapy based on optimized triggering of anti-tumor CD4+ T cells” (AIRC IG 8862); Italian Ministry of University and Research project PRIN “ New strategies of immunointervention against tumors” (2008-WXF7KK); Fondazione Cariplo “Cellular and molecular basis of human retroviral-dependent pathology”(2008–2230); University of Insubria “FAR 2009” and “FAR 2,010” to GT.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto S. Accolla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Accolla, R.S., Tosi, G. Adequate Antigen Availability: A Key Issue for Novel Approaches to Tumor Vaccination and Tumor Immunotherapy. J Neuroimmune Pharmacol 8, 28–36 (2013). https://doi.org/10.1007/s11481-012-9423-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-012-9423-7

Keywords

Navigation