Skip to main content

Advertisement

Log in

Effects of Moderate Prenatal Alcohol Exposure during Early Gestation in Rats on Inflammation across the Maternal-Fetal-Immune Interface and Later-Life Immune Function in the Offspring

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

During early brain development, microglial activation can negatively impact long-term neuroimmune and cognitive outcomes. It is well-known that significant alcohol exposure during early gestation results in a number of cognitive deficits associated with fetal alcohol spectrum disorders (FASD). Additionally, microglia are activated following high levels of alcohol exposure in rodent models of FASD. We sought to examine whether moderate prenatal alcohol exposure (70 mg/dL blood alcohol concentration) activates microglia in the fetal rat brain, and whether moderate fetal alcohol exposure has long-term negative consequences for immune function and cognitive function in the rat. We also measured inflammation within the placenta and maternal serum following moderate alcohol exposure to determine whether either could be a source of cytokine production in the fetus. One week of moderate prenatal alcohol exposure produced a sex-specific increase in cytokines and chemokines within the fetal brain. Cytokines were also increased within the placenta, regardless of the sex of the fetus, and independent of the low levels of circulating cytokines within the maternal serum. Adult offspring exposed to alcohol prenatally had exaggerated cytokine production in the brain and periphery in response to lipopolysaccharide (25 μg/kg), as well as significant memory deficits precipitated by this low-level of inflammation. Thus the immune system, including microglia, may be a key link to understanding the etiology of fetal alcohol spectrum disorders and other unexplored cognitive or health risks associated with even low levels of fetal alcohol exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akkerman S, Prickaerts J, Steinbusch HW, Blokland A (2012) Object recognition testing: statistical considerations. Behav Brain Res 232(2):317–322. doi:10.1016/j.bbr.2012.03.024

  • Antony JM, Paquin A, Nutt SL, Kaplan DR, Miller FD (2011) Endogenous microglia regulate development of embryonic cortical precursor cells. J Neurosci Res 89(3):286–298. doi:10.1002/jnr.22533

    Article  CAS  PubMed  Google Scholar 

  • Baker P, Sibley C (2006) In: Baker P, Sibley C (eds) The placenta and neurodisability. Cambridge University Press, Cambridge

    Google Scholar 

  • Bielawski DM, Abel EL (2002) The effect of administering ethanol as single vs. divided doses on blood alcohol levels in the rat. Neurotoxicol Teratol 24(4):559–562

    Article  CAS  PubMed  Google Scholar 

  • Bilbo SD, Schwarz JM (2009) Early-life programming of later-life brain and behavior: a critical role for the immune system. Front Behav Neurosci 3:14. doi:10.3389/neuro.08.014.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilbo SD, Schwarz JM (2012) The immune system and developmental programming of brain and behavior. Front Neuroendocrinol 33(3):267–286. doi:10.1016/j.yfrne.2012.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaser R, Heyser C (2015) Spontaneous object recognition: a promising approach to the comparative study of memory. Front Behav Neurosci 9:183. doi:10.3389/fnbeh.2015.00183

  • Centers for Disease Control and Prevention (CDC) (2015) Center for disease control and prevention: Alcohol and public health FAQs. Retrieved from http://www.cdc.gov/alcohol/faqs.htm

  • Chan WY, Kohsaka S, Rezaie P (2007) The origin and cell lineage of microglia: New concepts. Brain Res Rev 53(2):344–354

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Simar D, Lambert K, Mercier J, Morris MJ (2008) Maternal and postnatal overnutrition differentially impact appetite regulators and fuel metabolism. Endocrinology 149(11):5348–5356. doi:10.1210/en.2008-0582

    Article  CAS  PubMed  Google Scholar 

  • Corbier P, Edwards DA, Roffi J (1992) The neonatal testosterone surge: a comparative study. Arch Int Physiol Biochim Biophys 100(2):127–131

    CAS  PubMed  Google Scholar 

  • Crews FT, Nixon K (2009) Mechanisms of neurodegeneration and regeneration in alcoholism. Alcohol Alcohol (Oxford, Oxfordshire) 44(2):115–127. doi:10.1093/alcalc/agn079

    Article  CAS  Google Scholar 

  • Cuadros MA, Navascues J (1998) The origin and differentiation of microglial cells during development. Prog Neurobiol 56(2):173–189

    Article  CAS  PubMed  Google Scholar 

  • Cunningham CL, Martinez-Cerdeno V, Noctor SC (2013) Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci 33(10):4216–4233. doi:10.1523/JNEUROSCI.3441-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drew PD, Kane CJ (2014) Fetal alcohol spectrum disorders and neuroimmune changes. Int Rev Neurobiol 118:41–80. doi:10.1016/B978-0-12-801284-0.00003-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Drew PD, Johnson JW, Douglas JC, Phelan KD, Kane CJ (2015) Pioglitazone blocks ethanol induction of microglial activation and immune responses in the hippocampus, cerebellum, and cerebral cortex in a mouse model of fetal alcohol spectrum disorders. Alcohol Clin Exp Res 39(3):445–454. doi:10.1111/acer.12639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ennaceur A (2010) One-trial object recognition in rats and mice: methodological and theoretical issues. Behav Brain Res 215(2):244–254. doi:10.1016/j.bbr.2009.12.036

  • Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. Behav Brain Res 31(1):47–59

  • Estes ML, McAllister AK (2015) Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nature Reviews. Neuroscience 16(8):469–486. doi:10.1038/nrn3978

    CAS  PubMed  Google Scholar 

  • Falgreen Eriksen HL, Mortensen EL, Kilburn T, Underbjerg M, Bertrand J, Stovring H, et al. (2012) The effects of low to moderate prenatal alcohol exposure in early pregnancy on IQ in 5-year-old children. BJOG 119(10):1191–1200. doi:10.1111/j.1471-0528.2012.03394.x

    Article  PubMed  Google Scholar 

  • Fassbender K, Walter S, Kuhl S, Landmann R, Ishii K, Bertsch T, et al. (2004) The LPS receptor (CD14) links innate immunity with alzheimer’s disease. FASEB J : Official Publication of the Federation of American Societies for Experimental Biology 18(1):203–205. doi:10.1096/fj.03-0364fje

    CAS  Google Scholar 

  • Feigenson KA, Kusnecov AW, Silverstein SM (2014) Inflammation and the two-hit hypothesis of schizophrenia. Neurosci Biobehav Rev 38:72–93. doi:10.1016/j.neubiorev.2013.11.006

    Article  PubMed  Google Scholar 

  • Goodfellow MJ, Lindquist DH (2014) Significant long-term, but not short-term, hippocampal-dependent memory impairment in adult rats exposed to alcohol in early postnatal life. Dev Psychobiol 56(6):1316–1326. doi:10.1002/dev.21210

    CAS  PubMed  Google Scholar 

  • Guan Z, Fang J (2006) Peripheral immune activation by lipopolysaccharide decreases neurotrophins in the cortex and hippocampus in rats. Brain Behav Immun 20(1):64–71

    Article  CAS  PubMed  Google Scholar 

  • Jablonski SA, Stanton ME (2014) Neonatal alcohol impairs the context preexposure facilitation effect in juvenile rats: Dose-response and post-training consolidation effects. Alcohol (Fayetteville, N.Y.) 48(1):35–42. doi:10.1016/j.alcohol.2013.11.002

    Article  CAS  Google Scholar 

  • Kane CJ, Phelan KD, Han L, Smith RR, Xie J, Douglas JC, Drew PD (2011) Protection of neurons and microglia against ethanol in a mouse model of fetal alcohol spectrum disorders by peroxisome proliferator-activated receptor-gamma agonists. Brain Behav Immun 25(Suppl 1):S137–S145. doi:10.1016/j.bbi.2011.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kane CJ, Phelan KD, Douglas JC, Wagoner G, Johnson JW, Xu J, Drew PD (2013) Effects of ethanol on immune response in the brain: Region-specific changes in aged mice. J Neuroinflammation 10:66. doi:10.1186/1742-2094-10-66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly YJ, Sacker A, Gray R, Kelly J, Wolke D, Head J, Quigley MA (2012) Light drinking during pregnancy: still no increased risk for socioemotional difficulties or cognitive deficits at 5 years of age? J Epidemiol Community Health 66(1):41–48. doi:10.1136/jech.2009.103002

    Article  PubMed  Google Scholar 

  • Kent S, Bluthe RM, Dantzer R, Hardwick AJ, Kelley KW, Rothwell NJ, Vannice JL (1992) Different receptor mechanisms mediate the pyrogenic and behavioral effects of interleukin 1. Proc Natl Acad Sci U S A 89(19):9117–9120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis CE, Thomas KG, Dodge NC, Molteno CD, Meintjes EM, Jacobson JL, Jacobson SW (2015) Verbal learning and memory impairment in children with fetal alcohol spectrum disorders. Alcohol Clin Exp Res 39(4):724–732. doi:10.1111/acer.12671

    Article  PubMed  Google Scholar 

  • Livy DJ, Parnell SE, West JR (2003) Blood ethanol concentration profiles: A comparison between rats and mice. Alcohol (Fayetteville, N.Y.) 29(3):165–171

    Article  CAS  Google Scholar 

  • Losco P (1992) Normal development, growth, and aging of the spleen. In: Mohr U, Dungwörth DL, Capen CC (eds) Pathobiology of the aging rat, vol 1. ILSI Press, Washington, D.C., pp. 75–94

    Google Scholar 

  • Lupton C, Burd L, Harwood R (2004) Cost of fetal alcohol spectrum disorders. Am J Med Genet 127C(1):42–50. doi:10.1002/ajmg.c.30015

    Article  PubMed  Google Scholar 

  • Mattson SN, Calarco KE, Lang AR (2006) Focused and shifting attention in children with heavy prenatal alcohol exposure. Neuropsychology 20(3):361–369

    Article  PubMed  PubMed Central  Google Scholar 

  • Monji A, Kato TA, Mizoguchi Y, Horikawa H, Seki Y, Kasai M, et al. (2013) Neuroinflammation in schizophrenia especially focused on the role of microglia. Prog Neuro-Psychopharmacol Biol Psychiatry 42:115–121. doi:10.1016/j.pnpbp.2011.12.002

    Article  CAS  Google Scholar 

  • Murawski NJ, Klintsova AY, Stanton ME (2012) Neonatal alcohol exposure and the hippocampus in developing male rats: effects on behaviorally induced CA1 c-fos expression, CA1 pyramidal cell number, and contextual fear conditioning. Neuroscience 206:89–99. doi:10.1016/j.neuroscience.2012.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin L, He J, Hanes RN, Pluzarev O, Hong JS, Crews FT (2008) Increased systemic and brain cytokine production and neuroinflammation by endotoxin following ethanol treatment. J Neuroinflammation 5:10. doi:10.1186/1742-2094-5-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezaie P, Patel K, Male DK (1999) Microglia in the human fetal spinal cord--patterns of distribution, morphology and phenotype. Brain Res Dev Brain Res 115(1):71–81

    Article  CAS  PubMed  Google Scholar 

  • Rezaie P, Dean A, Male D, Ulfig N (2005) Microglia in the cerebral wall of the human telencephalon at second trimester. Cereb Cortex (New York, N.Y.: 1991) 15(7):938–949

    Google Scholar 

  • Schwarz JM, Sholar PW, Bilbo SD (2012) Sex differences in microglial colonization of the developing rat brain. J Neurochem 120(6):948–963. doi:10.1111/j.1471-4159.2011.07630.x

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skaper SD, Facci L, Giusti P (2014) Neuroinflammation, microglia and mast cells in the pathophysiology of neurocognitive disorders: A review. CNS Neurol Disord Drug Targets 13(10):1654–1666

    Article  PubMed  Google Scholar 

  • Skogerbo A, Kesmodel US, Wimberley T, Stovring H, Bertrand J, Landro NI, Mortensen EL (2012) The effects of low to moderate alcohol consumption and binge drinking in early pregnancy on executive function in 5-year-old children. BJOG 119(10):1201–1210. doi:10.1111/j.1471-0528.2012.03397.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Squarzoni P, Oller G, Hoeffel G, Pont-Lezica L, Rostaing P, Low D, et al. (2014) Microglia modulate wiring of the embryonic forebrain. Cell Rep 8(5):1271–1279. doi:10.1016/j.celrep.2014.07.042

    Article  CAS  PubMed  Google Scholar 

  • Streit WJ, Xue QS, Tischer J, Bechmann I (2014) Microglial pathology. Acta Neuropathol Commun 2:142. doi:10.1186/s40478-014-0142-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Weisz J, Ward IL (1980) Plasma testosterone and progesterone titers of pregnant rats, their male and female fetuses, and neonatal offspring. Endocrinology 106(1):306–316. doi:10.1210/endo-106-1-306

    Article  CAS  PubMed  Google Scholar 

  • Westbrook SR, Brennan LE, Stanton ME (2014) Ontogeny of object versus location recognition in the rat: acquisition and retention effects. Dev Psychobiol 56(7):1492–1506. doi:10.1002/dev.21232

  • Wyper KR, Rasmussen CR (2011) Language impairments in children with fetal alcohol spectrum disorders. J Popul Ther Clin Pharmacol = Journal De La Therapeutique Des Populations Et De La Pharamcologie Clinique 18(2):e364–e376

    PubMed  Google Scholar 

  • Yang JY, Xue X, Tian H, Wang XX, Dong YX, Wang F, et al. (2014) Role of microglia in ethanol-induced neurodegenerative disease: pathological and behavioral dysfunction at different developmental stages. Pharmacol Ther 144(3):321–337. doi:10.1016/j.pharmthera.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Lee HG, Perry G, Smith MA (2007) Alzheimer disease, the two-hit hypothesis: An update. Biochim Biophys Acta 1772(4):494–502

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Klintsova Lab, including Karen Boschen and Kerry Cris, for assistance with the Analox machine; Kenneth Kirschner for assistance with the multiplex analysis; as well as Andrew Blades, Julie Gomez, Caitlin Posillico, and Jasmine Caulfield for their additional technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaclyn M. Schwarz.

Ethics declarations

Funding

This study was funded by P5P20GM103653-02.

Conflict of Interest

Laurne S. Terasaki declares that she has no conflicts of interest. Jaclyn M. Schwarz declares that she has no conflicts of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Electronic Supplementary Material

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terasaki, L.S., Schwarz, J.M. Effects of Moderate Prenatal Alcohol Exposure during Early Gestation in Rats on Inflammation across the Maternal-Fetal-Immune Interface and Later-Life Immune Function in the Offspring. J Neuroimmune Pharmacol 11, 680–692 (2016). https://doi.org/10.1007/s11481-016-9691-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-016-9691-8

Keywords

Navigation