Skip to main content
Log in

Competing Effects of Toxin-Producing Phytoplankton on Overall Plankton Populations in the Bay of Bengal

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The coexistence of a large number of phytoplankton species on a seemingly limited variety of resources is a classical problem in ecology, known as ‘the paradox of the plankton’. Strong fluctuations in species abundance due to the external factors or competitive interactions leading to oscillations, chaos and short-term equilibria have been cited so far to explain multi-species coexistence and biodiversity of phytoplankton. However, none of the explanations has been universally accepted. The qualitative view and statistical analysis of our field data establish two distinct roles of toxin-producing phytoplankton (TPP): toxin allelopathy weakens the interspecific competition among phytoplankton groups and the inhibition due to ingestion of toxic substances reduces the abundance of the grazer zooplankton. Structuring the overall plankton population as a combination of nontoxic phytoplankton (NTP), toxic phytoplankton, and zooplankton, here we offer a novel solution to the plankton paradox governed by the activity of TPP. We demonstrate our findings through qualitative analysis of our sample data followed by analysis of a mathematical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, R.A., McGehee, R., 1980. Competitive exclusion. Am. Nat. 115, 151–170.

    Article  MathSciNet  Google Scholar 

  • Bracco, A., Provenzale, A., Scheuring, I., 2000. Mesoscale vortices and the paradox of the plankton. Proc. R. Soc. Lond. B 267, 1795–1800.

    Article  Google Scholar 

  • Britton, N.F., 1989. Aggregation and the competitive exclusion principle. J. Theor. Biol. 136, 57–66.

    Article  MathSciNet  Google Scholar 

  • Byrne, G.D., Hindmarsh, A.C., March 1975. A polyalgorithm for the numerical solution of ODEs, ACM TOMS 1(1), 71–96.

    Article  MATH  MathSciNet  Google Scholar 

  • Buskley, E.J., Stockwell, A.J., 1997. Effect of persistent “brown tide” on zooplankton population in the Laguna Madre of southern Texas. In: Smayda, T.J., Shimuzu, Y. (Eds.), Toxic Phytoplankton Bloom in the Sea. Elsevier, Amsterdam, The Netherlands, pp. 659–666.

    Google Scholar 

  • Chattopadhyay, J., Sarkar, R.R., Elabdllaoui, A., 2002b. A delay differential equation model on harmful algal blooms in the presence of toxic substances. IMA J. Math. Appl. Med. Biol. 19, 137–161.

    Article  MATH  Google Scholar 

  • Chattopadhyay, J., Sarkar, R.R., Mandal, S., 2002a. Toxin-producing plankton may act as a biological control for planktonic blooms—Field study and mathematical modelling. J. Theor. Biol. 215, 333–344.

    Article  Google Scholar 

  • Chattopadhyay, J., Sarkar, R.R., Pal, S., 2004. Harmful algal blooms—Mathematical and stochastic modelling supported by experimental findings. Ecol. Complex. 1, 225–235.

    Article  Google Scholar 

  • Descamps-Julien, B., Gonzalez, A., 2005. Stable coexistence in a fluctuating environment: An experimental demonstration. Ecology 86(1), 2815–2824.

    Article  Google Scholar 

  • Erdman, D., Morelock, M.M., 1996. A Study of Kinetics: The Estimation and Simulation of Systems of First-Order Differential Equations, Proceedings of the tewenty-first annual SAS® users group international conference, pp. 1407–1414 (http://support.sas.com/rnd/app/papers/kinetics.pdf.)

  • Hallegraeff, G.M., 1993. A review of harmful algae blooms and the apparent global increase. Phycologia 32, 79–99.

    Google Scholar 

  • Heerkloss, R., Klinkenberg, G., 1998. A long-term series of a planktonic foodweb: A case of chaotic dynamics. Verh. Int. Ver. Limnol. 26, 1952–1956.

    Google Scholar 

  • Hassel, M.P., Comins, H.N., May, R.M., 1994. Species coexistence and self-organizing spatial dynamics. Hydrobiologia 344, 87–102.

    Google Scholar 

  • Huisman, J., Johansson, A.M., Folmer, E.O., Weissing, F.J., 2001. Towards a solution of the plankton paradox: The importance of physiology and life history. Ecol. Lett. 4, 408–411.

    Article  Google Scholar 

  • Huisman, J., Van Oostveen, P., Weissing, F.J., 1999. Species dynamics in phytoplankton blooms: Incomplete mixing and competition for light. Am. Nat. 154, 46–68.

    Article  Google Scholar 

  • Huisman, J., Weissing, F.J., 1999. Biodiversity of plankton by species oscillation and chaos. Nature 402, 407–410.

    Article  Google Scholar 

  • Hulot, Florence D., Huisman, J., 2004. Allelopathic interactions between phytoplankton species: The role of heterotrophic bacteria and mixing intensity. Limnol. Oceanogr. 49, 1424–1434.

    Article  Google Scholar 

  • Hutchinson, G.E., 1961. The paradox of the plankton. Am. Nat. 95, 137–145.

    Article  Google Scholar 

  • Ives, J.D., 1961. Possible mechanism underlying copepod grazing responses to levels of toxicity in red tide dinoflagellates. J. Exp. Mar. Biol. Ecol. 112, 131–145.

    Article  Google Scholar 

  • Ives, A.R., May, R.M., 1985. Competition within and between species in a patchy environment: Relations between microscopic and macroscopic model. J. Theor. Biol. 115, 65–92.

    Article  MathSciNet  Google Scholar 

  • Kirk, K., Gilbert, J., 1992. Variation in herbivore response to chemical defence: Zooplankton foraging on toxic cynobacteria. Ecology 73, 2208.

    Article  Google Scholar 

  • Kozlowsky-Suzuki, B., et al., 2003. Feeding, reproduction and toxin accumulation by the copepods Acartia bifilosa and Eurytenora affinis in the presence of the toxic cynobacterium Nodularia spumigena. Mar. Ecol. Prog. 249, 237–249.

    Google Scholar 

  • Levins, R., 1979. Coexistence in a variable environment. Am. Nat. 114, 765–783.

    Article  MathSciNet  Google Scholar 

  • Ludwig, D., et al., 1978. Qualitative analysis of an insect outbreak system: The sruce budworm and forest. J. Anim. Ecol. 47, 315.

    Article  Google Scholar 

  • Nielsen, T.G., Kiorboe, T., Bjornsen, P.K., 1990. Effect of Chrysochromulina polylepis sub surface bloom on the plankton community. Mar. Ecol. Prog. Ser. 62, 21–35.

    Google Scholar 

  • Odum, E.P., 1971. Fundamentals of Ecology. Sunders, Philadelphia, PA.

    Google Scholar 

  • Powell, T., Richerson, P.J., 1985. Temporal variation, spatial heterogeneity, and competition for resources in plankton system: A theoretical model. Am. Nat. 125, 431–464.

    Article  Google Scholar 

  • Richarson, P.J., Armstrong, R., Goldman, C.R., 1970. Contemporaneous disequilibrium: A new hypothesis to explain the paradox of plankton. Proc. Natl. Acad. Sci. U.S.A. 67, 1710–1714.

    Article  Google Scholar 

  • Rothhaupt, K.O., 1988. Mechanistic resource competition theory applied to laboratory experiments with zooplankton. Nature 333, 660–662.

    Article  Google Scholar 

  • Rothhaupt, K.O., 1996. Laboratory experiments with a mixotrophic and phototrophic competitors. Ecology 77, 716–724.

    Article  Google Scholar 

  • Roy, S., Bhattacharya, S., Das, P., Chattopadhyay, J., 2005. Interaction among nontoxic phytoplankton, toxic phytoplankton and zooplankton: Inferences from field observations (manuscript in preparation).

  • Roy, S., Chattopadhyay, J., 2006. Toxin-alleopathy among phytoplankton species prevents competition exclusion. J. Biol. Sys., submitted for publication.

  • Sarkar, R.R., Chattopadhyay, J., 2003a. Occurence of planktonic blooms under environmental fluctuations and its possible control mechanism-mathematical models and experimental observations. J. Theor. Biol. 224, 501–516.

    Article  Google Scholar 

  • Sarkar, R.R., Chattopadhyay, J., 2003b. The role of environmental stochasticity in a toxic phytoplankton – Non-toxic phytoplankton–zooplankton system. Environmentrics 14, 775–792.

    Article  Google Scholar 

  • Scheffer, M., Rinaldi, S., Gragnani, L.R. Mur, van Nes, E.H., 1997. On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78, 272–282.

    Article  Google Scholar 

  • Scheffer, M., Rinaldi, S., Huisman, J., Weissing, F.J., 2003. Why phytoplankton communities have no equilibrium: Solutions to the paradox. Hydrobiologia 491, 9–18.

    Article  Google Scholar 

  • Solé, J., García-Ladona, E., Ruardij, P., Estrada, M., 2005. Modelling allelopathy among marine algae. Eco. Mod. 183, 373–384.

    Article  Google Scholar 

  • Sommer, U., 1985. Comparison between steady state and non-steady state competition: Experiments with natural phytoplankton. Limnol. Oceanogr. 30, 335–346.

    Article  Google Scholar 

  • Sommer, U., 1986. Nitrate-and silicate-competition among Antarctic phytoplankton. Mar. Biol. 91, 345–351.

    Article  Google Scholar 

  • Steidinger, K.A., et al., 1996. Pfiesteria Piscicida, a new toxic dinoflagelate genus and species of the order Dinamoebales. J. Phycol. 32, 157–164.

    Article  Google Scholar 

  • Tilman, D., 1977. Resource competition between planktonic algae: An experimental and theoritical approach. Ecology 58, 338–348.

    Article  Google Scholar 

  • Tilman, D., 1981. Test of resource competition theory using four species of Lake Michigan algae. Ecology 62, 802–815.

    Article  Google Scholar 

  • Tomas, C.R., 1997. Identifying Marine Diatoms and Dinoflagellates. AP, San Diego, CA, p. 858.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, S., Alam, S. & Chattopadhyay, J. Competing Effects of Toxin-Producing Phytoplankton on Overall Plankton Populations in the Bay of Bengal. Bull. Math. Biol. 68, 2303–2320 (2006). https://doi.org/10.1007/s11538-006-9109-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9109-5

Keywords

Navigation