Skip to main content
Log in

From Microscopic to Macroscopic Descriptions of Cell Migration on Growing Domains

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Cell migration and growth are essential components of the development of multicellular organisms. The role of various cues in directing cell migration is widespread, in particular, the role of signals in the environment in the control of cell motility and directional guidance. In many cases, especially in developmental biology, growth of the domain also plays a large role in the distribution of cells and, in some cases, cell or signal distribution may actually drive domain growth. There is an almost ubiquitous use of partial differential equations (PDEs) for modelling the time evolution of cellular density and environmental cues. In the last 20 years, a lot of attention has been devoted to connecting macroscopic PDEs with more detailed microscopic models of cellular motility, including models of directional sensing and signal transduction pathways. However, domain growth is largely omitted in the literature. In this paper, individual-based models describing cell movement and domain growth are studied, and correspondence with a macroscopic-level PDE describing the evolution of cell density is demonstrated. The individual-based models are formulated in terms of random walkers on a lattice. Domain growth provides an extra mathematical challenge by making the lattice size variable over time. A reaction–diffusion master equation formalism is generalised to the case of growing lattices and used in the derivation of the macroscopic PDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alber, M., Chen, N., Lushnikov, P.M., Newman, S.A., 2007. Continuous macroscopic limit of a discrete stochastic model for interaction of living cells. Phys. Rev. Lett. 99(16), 168102–168104.

    Article  Google Scholar 

  • Baker, R.E., Maini, P.K., 2007. A mechanism for morphogen-controlled domain growth. J. Math. Biol. 54(5), 597–622.

    Article  MATH  MathSciNet  Google Scholar 

  • Barkai, N., Leibler, S., 1997. Robustness in simple biochemical networks. Nature 387, 913–917.

    Article  Google Scholar 

  • Berg, H.C., 1975. How bacteria swim. Sci. Am. 233, 36–44.

    Article  Google Scholar 

  • Berg, H.C., 1983. Random Walks in Biology. Princeton University Press, Princeton.

    Google Scholar 

  • Berg, H.C., Purcell, E.M., 1977. Physics of chemoreception. Biophys. J. 20(2), 193–219.

    Article  Google Scholar 

  • Brenner, M.P., Levitov, L.S., Budrene, E.O., 1998. Physical mechanisms for chemotactic pattern formation by bacteria. Biophys. J. 74(4), 1677–1693.

    Article  Google Scholar 

  • Chalub, F., Markowich, P., Perthame, B., Schmeiser, C., 2004. Kinetic models for chemotaxis and their drift–diffusion limits. Monatsh. Math. 142(1–2), 123–141.

    Article  MATH  MathSciNet  Google Scholar 

  • Cluzel, P., Surette, M., Leibler, S., 2000. An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287, 1652–1655.

    Article  Google Scholar 

  • Crampin, E.J., Maini, P.K., 2001. Reaction–diffusion models for biological pattern formation. Methods Appl. Anal. 8(3), 415–428.

    MATH  MathSciNet  Google Scholar 

  • Crampin, E.J., Gaffney, E.A., Maini, P.K., 1999. Reaction and diffusion on growing domains: scenarios for robust pattern formation. Bull. Math. Biol. 61(6), 1093–1120.

    Article  Google Scholar 

  • Crampin, E.J., Hackborn, W.W., Maini, P.K., 2002. Pattern formation in reaction–diffusion models with nonuniform domain growth. Bull. Math. Biol. 64(4), 747–769.

    Article  Google Scholar 

  • Crickmore, M.A., Mann, R.S., 2006. Hox control of organ size by regulation of morphogen production and mobility. Science 313(5783), 63–68.

    Article  Google Scholar 

  • Dolak, Y., Schmeiser, C., 2005. Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms. J. Math. Biol. 51(6), 595–615.

    Article  MATH  MathSciNet  Google Scholar 

  • Erban, R., Othmer, H.G., 2004. From individual to collective behaviour in bacterial chemotaxis. SIAM J. Appl. Math. 65(2), 361–391.

    Article  MATH  MathSciNet  Google Scholar 

  • Erban, R., Othmer, H.G., 2005. From signal transduction to spatial pattern formation in E. coli: A paradigm for multi-scale modeling in biology. Multiscale Model. Simul. 3(2), 362–394.

    Article  MATH  MathSciNet  Google Scholar 

  • Erban, R., Othmer, H.G., 2007. Taxis equations for amoeboid cells. J. Math. Biol. 54(6), 847–885.

    Article  MATH  MathSciNet  Google Scholar 

  • Erban, R., Kevrekidis, I., Othmer, H.G., 2006. An equation-free computational approach for extracting population-level behavior from individual-based models of biological dispersal. Physica D 215(1), 1–24.

    Article  MATH  MathSciNet  Google Scholar 

  • Erban, R., Chapman, S.J., Maini, P.K., 2007. A practical guide to stochastic simulations of reaction-diffusion processes, 34 pages, available as http://arxiv.org/abs/0704.1908.

  • Gibson, M., Bruck, J., 2000. Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104, 1876–1889.

    Article  Google Scholar 

  • Gillespie, D.T., 1977. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361.

    Article  Google Scholar 

  • Gomez, T.M., Letourneau, P.C., 1994. Filopodia initiate choices made by sensory neuron growth cones at laminin/fibronectin borders in vitro. J. Neurosci. 14(10), 5959–5972.

    Google Scholar 

  • Hattne, J., Fange, D., Elf, J., 2005. Stochastic reaction-diffusion simulation with MesoRD. Bioinformatics 21(12), 2923–2924.

    Article  Google Scholar 

  • Hillen, T., Othmer, H.G., 2000. The diffusion limit of transport equations derived from velocity-jump processes. SIAM J. Appl. Math. 61, 751–775.

    Article  MATH  MathSciNet  Google Scholar 

  • Höfer, T., Sherratt, J.A., Maini, P.K., 1995. Cellular pattern formation during dictyostelium aggregation. Physica D 85(3), 425–444.

    Article  MATH  Google Scholar 

  • Horstmann, D., Painter, K.J., Othmer, H.G., 2004. Aggregation under local reinforcement: From lattice to continuum. Eur. J. Appl. Math. 15, 545–576.

    Article  MATH  MathSciNet  Google Scholar 

  • Keller, E., Segel, L., 1970. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26(3), 399–415.

    Article  Google Scholar 

  • Keller, E., Segel, L., 1971a. Model for chemotaxis. J. Theor. Biol. 30, 225–234.

    Article  Google Scholar 

  • Keller, E., Segel, L., 1971b. Traveling bands of chemotactic bacteria: A theoretical analysis. J. Theor. Biol. 30, 235–248.

    Article  Google Scholar 

  • Levine, H., Kessler, D., Rappel, W., 2006. Directional sensing in eukaryotic chemotaxis: A balanced inactivation model. Proc. Natl. Acad. Sci. USA 103(26), 9761–9766.

    Article  Google Scholar 

  • Lin, F., Nguyen, C.M.-C., Wang, S.-J., Saadi, W., Gross, S.P., Jeon, N.L., 2004. Effective neutrophil chemotaxis is strongly influenced by mean IL-8 concentration. Biochem. Biophys. Res. Commun. 319(2), 576–581.

    Article  Google Scholar 

  • Murray, J.D., 2002. Mathematical Biology. Springer, Berlin.

    MATH  Google Scholar 

  • Othmer, H.G., Hillen, T., 2002. The diffusion limit of transport equations II: chemotaxis equations. SIAM J. Appl. Math. 62(4), 1222–1250.

    Article  MATH  MathSciNet  Google Scholar 

  • Othmer, H.G., Schaap, P., 1998. Oscillatory cAMP signaling in the development of Dictyostelium discoideum. Commun. Theor. Biol. 5, 175–282.

    Google Scholar 

  • Othmer, H.G., Stevens, A., 1997. Aggregation, blowup, and collapse: The ABC’s of taxis in reinforced random walks. SIAM J. Appl. Math. 57(4), 1044–1081.

    Article  MATH  MathSciNet  Google Scholar 

  • Othmer, H.G., Dunbar, S., Alt, W., 1988. Models of dispersal in biological systems. J. Math. Biol. 26, 263–298.

    Article  MATH  MathSciNet  Google Scholar 

  • Painter, K.J., Hillen, T., 2002. Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Q. 10(4), 501–543.

    MATH  MathSciNet  Google Scholar 

  • Painter, K.J., Horstmann, D., Othmer, H.G., 2003. Localisation in lattice and continuum models of reinforced random walks. Appl. Math. Lett. 16(3), 375–381.

    Article  MATH  MathSciNet  Google Scholar 

  • Parent, C., Devreotes, P., 1999. A cell’s sense of direction. Science 284, 765–770.

    Article  Google Scholar 

  • Patlak, C., 1963. Random walk with persistence and external bias. Bull. Math. Biophys. 15(3), 311–338.

    Article  MathSciNet  Google Scholar 

  • Rogulja, D., Irvine, K., 2005. Regulation of cell proliferation by a morphogen gradient. Cell 123(3), 449–461.

    Article  Google Scholar 

  • Spiro, P., Parkinson, J., Othmer, H.G., 1997. A model of excitation and adaptation in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 94, 7263–7268.

    Article  Google Scholar 

  • Turner, S., Sherratt, J.A., Painter, K.J., 2004. From a discrete to continuous model of biological cell movement. Phys. Rev. E 69, 021910-1–021910-10.

    Article  MathSciNet  Google Scholar 

  • Veikkola, T., Karkkainen, M., Claesson-Welsh, L., Alitalo, K., 2000. Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res. 60(2), 203–212.

    Google Scholar 

  • Ward, M., McCann, C., DeWulf, M., Wu, J.Y., Rao, Y., 2003. Distinguishing between directional guidance and motility regulation in neuronal migration. J. Neurosci. 23(12), 5170–5177.

    Google Scholar 

  • Wessels, D., Murray, J.D., Soll, D., 1992. Behavior of Dictyostelium amoebae is regulated primarily by the temporal dynamic of the natural cAMP wave. Cell Motil. Cytoskel. 23(2), 145–156.

    Article  Google Scholar 

  • Wolpert, L., Beddington, R., Jessell, T., Lawrence, P., Meyerowitz, E., Smith, J., 2006. Principles of Development, 3rd edn. Oxford University Press, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth E. Baker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, R.E., Yates, C.A. & Erban, R. From Microscopic to Macroscopic Descriptions of Cell Migration on Growing Domains. Bull. Math. Biol. 72, 719–762 (2010). https://doi.org/10.1007/s11538-009-9467-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9467-x

Keywords

Navigation