Skip to main content

Advertisement

Log in

A Mechanism for Ultra-Slow Oscillations in the Cortical Default Network

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

When the brain is in its noncognitive “idling” state, functional MRI measurements reveal the activation of default cortical networks whose activity is suppressed during cognitive processing. This default or background mode is characterized by ultra-slow BOLD oscillations (∼0.05 Hz), signaling extremely slow cycling in cortical metabolic demand across distinct cortical regions. Here we describe a model of the cortex which predicts that slow cycling of cortical activity can arise naturally as a result of nonlinear interactions between temporal (Hopf) and spatial (Turing) instabilities. The Hopf instability is triggered by delays in the inhibitory postsynaptic response, while the Turing instability is precipitated by increases in the strength of the gap-junction coupling between interneurons. We comment on possible implications for slow dendritic computation and information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bennett, M. V., & Zukin, R. S. (2004). Electrical coupling and neuronal synchronization in the mammalian brain. Neuron, 41, 495–511.

    Article  Google Scholar 

  • Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S. F., Rao, S. M., & Cox, R. W. (1999). Conceptual processing during the conscious resting state: a functional MRI study. J. Cogn. Neurosci., 11(1), 80–93.

    Article  Google Scholar 

  • Bose, S., Rodin, P., & Schöll, E. (2000). Competing spatial and temporal instabilities in a globally coupled bistable semiconductor systems near a codimension-two bifurcation. Phys. Rev. E, 62, 1778–1789.

    Article  Google Scholar 

  • Damoiseaux, J. S., Rombouts, S. A. R. B., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., & Beckmann, C. F. (2006). Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. USA, 103, 13848–13853.

    Article  Google Scholar 

  • De Wit, A., Lima, D., Dewel, G., & Borckmans, P. (1996). Spatiotemporal dynamics near a codimension-two point. Phys. Rev. E, 54, 261–271.

    Article  Google Scholar 

  • Deco, G., Jirsa, V., McIntosh, A. R., Sporns, O., & Kötter, R. (2009). Key role of coupling, delay, and noise in resting brain fluctuations. Proc. Natl. Acad. Sci. USA, 106(25), 10302–10307.

    Article  Google Scholar 

  • Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top-down processing. Nature Rev. Neurosci., 2(10), 704–716.

    Article  Google Scholar 

  • Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Rev. Neurosci., 8, 700–711.

    Article  Google Scholar 

  • Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA, 102(27), 9673–9678.

    Article  Google Scholar 

  • Fransson, P. (2005). Human spontaneous low-frequency BOLD signal fluctuations: An fMRI investigation of the resting-state default mode of brain function hypothesis. Hum. Brain Mapp., 26, 15–29.

    Article  Google Scholar 

  • Fransson, P. (2006). How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia, 44(14), 2836–2845.

    Article  Google Scholar 

  • Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends Cogn. Sci., 9(10), 474–480.

    Article  Google Scholar 

  • Ghosh, A., Rho, Y., McIntosh, A. R., Kötter, R., & Jirsa, V. K. (2008). Noise during rest enables the exploration of the brain’s dynamic repertoire. PLoS Comput. Biol., 4(10), e1000196.

    Article  Google Scholar 

  • Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA, 100, 253–258.

    Article  Google Scholar 

  • Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline: Functional imaging and the resting human brain. Nature Rev. Neurosci., 2, 685–694.

    Article  Google Scholar 

  • Hagedorn, P., & DasGupta, A. (2007). Vibrations and waves in continuous mechanical systems. New York: Wiley.

    Book  MATH  Google Scholar 

  • Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J., & Sporns, O. (2008). Mapping the structural core of human cerebral cortex. PLoS Biol., 6(7), e159.

    Article  Google Scholar 

  • Haüsser, M. (2001). Synaptic function: Dendritic democracy. Current Biol., 11(1), R10–R12.

    Article  Google Scholar 

  • Hlinka, J., & Coombes, S. (2010). Depolarization induced suppression of excitation and the emergence of ultraslow rhythms in neural networks. Phys. Rev. Lett., 104(6), 068101.

    Article  Google Scholar 

  • Honey, C. J., Kötter, R., Breakspear, M., & Sporns, O. (2007). Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl. Acad. Sci. USA, 104(24), 10240–10245.

    Article  Google Scholar 

  • Kötter, R. (2004). Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac database. Neuroinformatics, 2(2), 127–144.

    Article  Google Scholar 

  • Laufs, H., Kleinschmidt, A., Beyerle, A., Eger, E., Salek-Haddadi, A., Preibisch, C., & Krakow, K. (2003). EEG-correlated fMRI of human alpha activity. NeuroImage, 19(4), 1463–1476.

    Article  Google Scholar 

  • Mantini, D., Perrucci, M. G., Del Gratta, C., Romani, G. L., & Corbetta, M. (2007). Electrophysiological signatures of resting state networks in the human brain. Proc. Natl. Acad. Sci. USA, 104(32), 13170–13175.

    Article  Google Scholar 

  • Mazoyera, B., Zagoa, L., Melleta, E., Bricognea, S., Etarda, O., Houdéa, O., Crivelloa, F., Joliota, M., Petita, L., & Tzourio-Mazoyer, N. (2001). Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res. Bull., 54(3), 287–298.

    Article  Google Scholar 

  • Meixner, M., Bose, S., & Schöll, E. (1997a). Analysis of complex and chaotic patterns near a codimension-two Turing–Hopf point in a reaction–diffusion model. Physica D, 109, 128–138.

    Article  MATH  Google Scholar 

  • Meixner, M., De Wit, A., Bose, S., & Schöll, E. (1997b). Generic spatiotemporal dynamics near codimension-two Turing–Hopf bifurcations. Phys. Rev. E, 55, 6690–6697.

    Article  MathSciNet  Google Scholar 

  • Migliore, M., & Shepherd, G. M. (2002). Emerging rules for the distributions of active dendritic conductances. Nature Rev. Neurosci., 3(5), 362–370.

    Article  Google Scholar 

  • Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci. USA, 98, 676–682.

    Article  Google Scholar 

  • Raichle, M. E., & Snyder, A. Z. (2007). A default mode of brain function: a brief history of an evolving idea. NeuroImage, 37(4), 1083–1090.

    Article  Google Scholar 

  • Rennie, C. J., Wright, J. J., & Robinson, P. A. (2000). Mechanisms for cortical electrical activity and emergence of gamma rhythm. J. Theor. Biol., 205, 17–35.

    Article  Google Scholar 

  • Robinson, P. A., Rennie, C. J., & Wright, J. J. (1997). Propagation and stability of waves of electrical activity in the cerebral cortex. Phys. Rev. E, 56, 826–840.

    Article  Google Scholar 

  • Segev, I., & London, M. (2000). Untangling dendrites with quantitative models. Science, 290(5492), 744–750.

    Article  Google Scholar 

  • Sporns, O., Honey, C. J., & Kötter, R. (2007). Identification and classification of hubs in brain networks. PLoS One, 2(10), e1049.

    Article  Google Scholar 

  • Steyn-Ross, D. A., Steyn-Ross, M. L., Wilson, M. T., & Sleigh, J. W. (2006). White-noise susceptibility and critical slowing in neurons near spiking threshold. Phys. Rev. E, 74, 051920.

    Article  MathSciNet  Google Scholar 

  • Steyn-Ross, M. L., Steyn-Ross, D. A., Wilson, M. T., & Sleigh, J. W. (2007). Gap junctions mediate large-scale Turing structures in a mean-field cortex driven by subcortical noise. Phys. Rev. E, 76, 011916.

    Article  MathSciNet  Google Scholar 

  • Steyn-Ross, M. L., Steyn-Ross, D. A., Wilson, M. T., & Sleigh, J. W. (2008). Interacting Turing and Hopf instabilities drive pattern formation in a noise-driven model cortex. In R. Wang, F. Gu, & E. Shen (Eds.), Advances in cognitive neurodynamics ICCN 2007 (pp. 227–232). Berlin: Springer. Chap. 40.

    Google Scholar 

  • Steyn-Ross, M. L., Steyn-Ross, D. A., Wilson, M. T., & Sleigh, J. W. (2009). Modeling brain activation patterns for the default and cognitive states. NeuroImage, 45, 298–311.

    Article  Google Scholar 

  • Steyn-Ross, M. L., Steyn-Ross, D. A., Wilson, M. T., & Sleigh, J. W. (2010). Cortical patterns and gamma genesis are modulated by reversal potentials and gap-junction diffusion. In D. A. Steyn-Ross, & M. L. Steyn-Ross (Eds.), Springer series in computational neuroscience : Vol. 4. Modeling phase transitions in the brain (pp. 271–299). Berlin: Springer. Chap. 12.

    Chapter  Google Scholar 

  • Wright, J. J. (2010). Phase transitions, cortical gamma, and the selection and read-out of information stored in synapses. In D. A. Steyn-Ross, & M. L. Steyn-Ross (Eds.), Springer series in computational neuroscience : Vol. 4. Modeling phase transitions in the brain (pp. 243–269). Berlin: Springer. Chap. 11.

    Chapter  Google Scholar 

  • Yang, L., Dolnik, M., Zhabotinsky, A. M., & Epstein, I. R. (2002). Pattern formation arising from interactions between Turing and wave instabilities. J. Chem. Phys., 117, 7259–7265.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moira L. Steyn-Ross.

Additional information

Research supported by the Royal Society of New Zealand Marsden Fund, contract 07-UOW-037.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W. et al. A Mechanism for Ultra-Slow Oscillations in the Cortical Default Network. Bull Math Biol 73, 398–416 (2011). https://doi.org/10.1007/s11538-010-9565-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9565-9

Keywords

Navigation