Skip to main content
Log in

Bacteriophage and Bacteria in a Flow Reactor

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The Levin-Stewart model of bacteriophage predation of bacteria in a chemostat is modified for a flow reactor in which bacteria are motile, phage diffuse, and advection brings fresh nutrient and removes medium, cells and phage. A fixed latent period for phage results in a system of delayed reaction-diffusion equations with non-local nonlinearities. Basic reproductive numbers are obtained for bacteria and for phage which predict survival of each in the bio-reactor. These are expressed in terms of physical and biological parameters. Persistence and extinction results are obtained for both bacteria and phage. Numerical simulations are in general agreement with those for the chemostat model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ballyk, M., Le Dung Jones, D., & Smith, H. L. (1998). Effects of random motility on microbial growth and competition in a flow reactor. SIAM J. Appl. Math., 59(2), 573–596.

    Article  Google Scholar 

  • Beretta, E., Solimano, F., & Tang, Y. (2002). Analysis of a chemostat model for bacteria and virulent bacteriophage. Discrete Contin. Dyn. Syst., Ser. B, 2, 495–520

    Article  MathSciNet  MATH  Google Scholar 

  • Dubin, S., Benedek, G., Bancroft, F., & Freifelder, D. (1970). Molecular weights of coliphages and Coliphage DNA II. Measurement of diffusion coefficients using optical mixing spectroscopy, and measurement of sedimentation coefficients. J. Mol. Biol., 54, 547–556.

    Article  Google Scholar 

  • Dung, L., & Smith, H. L. (1996). A parabolic system modeling microbial competition in an unmixed bio-reactor. J. Differ. Equ., 130, 59–91.

    Article  MathSciNet  MATH  Google Scholar 

  • Durrett, R. (1996). Stochastic Calculus, a practical introduction. Boca Raton: CRC.

    MATH  Google Scholar 

  • Gourley, S. A., & Britton, N. F. (1996). A predator-prey reaction-diffusion system with non-local effects. J. Math. Biol., 34, 297–333.

    MathSciNet  MATH  Google Scholar 

  • Jones, D., Kojouharov, H., Dung, L., & Smith, H. L. (2002). Bacterial wall attachment in a flow reactor. SIAM J. Appl. Math., 62, 1728–1771.

    Article  MathSciNet  MATH  Google Scholar 

  • Jones, D., Kojouharov, H., Dung, L., & Smith, H. L. (2003). Bacterial wall attachment in a flow reactor: mixed culture. Can. Appl. Math. Q., 10, 111–138.

    Google Scholar 

  • Karlin, S., & Taylor, H. (1981). A second course in stochastic processes. London: Academic Press.

    MATH  Google Scholar 

  • Kung, C. M., & Baltzis, B. (1992). The growth of pure and simple microbial competitors in a moving distributed medium. Math. Biosci., 111, 295–313.

    Article  MATH  Google Scholar 

  • Lenski, R., & Levin, B. (1985). Constraints on the evolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities. Am. Nat., 125(4), 585–602.

    Article  Google Scholar 

  • Levin, B., Stewart, F., & Chao, L. (1977). Resource-limited growth, competition, and predation: a model, and experimental studies with bacteria and bacteriophage. Am. Nat., 111, 3–24.

    Article  Google Scholar 

  • Marcati, P., & Pozio, M. (1980). Global asymptotic stability for a vector disease model with spatial spread. J. Math. Biol., 9, 179–187.

    Article  MathSciNet  MATH  Google Scholar 

  • Martin, R., & Smith, H. L. (1990). Abstract functional differential equations and reaction-diffusion systems. Trans. Am. Math. Soc., 321, 1–44.

    Article  MathSciNet  MATH  Google Scholar 

  • Pao, C. V. (1992). Nonlinear parabolic and elliptic equations. New York: Plenum.

    MATH  Google Scholar 

  • Smith, H. L. (1995a). An application of monotone dynamical systems theory to model of microbial competition. In Z. Deng et al. (Eds.), Lecture notes in pure and applied mathematics. Differential equations and control theory. New York: Marcel Dekker.

    Google Scholar 

  • Smith, H. L. (1995b). Monotone Dynamical Systems: an introduction to the theory of competitive and cooperative systems. Amer. math. soc. surveys and monographs. (p. 41). Providence: AMS.

    MATH  Google Scholar 

  • Smith, H. L. (2010). An introduction to delay differential equations with applications to the life sciences. Texts in applied math. Berlin: Springer.

    Google Scholar 

  • Smith, H. L. (2011, to appear). Well-posedness and dissipativity for a model of bacteriophage and bacteria in a flow reactor. Rocky M. J. Math.

  • Smith, H. L., & Thieme, H. R. (2010). Dynamical systems and population persistence. Graduate studies in math. (p. 118). Providence: AMS.

    Google Scholar 

  • Smith, H. L., & Thieme, H. R. (2011, under review). Persistence of bacteriophages and bacteria in a chemostat.

  • Smith, H. L., & Waltman, P. (1999). Perturbation of a globally stable steady state. Proc. Am. Math. Soc., 127, 447–453.

    Article  MathSciNet  MATH  Google Scholar 

  • Thieme, H. R., & Zhao, X.-Q. (2001). A non-local delayed and diffusive predator-prey model. Nonlinear Anal., Real World Appl., 2, 145–160.

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, J. (1996). Theory and applications of partial functional differential equations. Applied math sciences (p. 119). New York: Springer.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hal L. Smith.

Additional information

Supported by NSF Grant DMS 0918440.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, D.A., Smith, H.L. Bacteriophage and Bacteria in a Flow Reactor. Bull Math Biol 73, 2357–2383 (2011). https://doi.org/10.1007/s11538-010-9626-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9626-0

Keywords

Navigation