Skip to main content

Advertisement

Log in

Feedback Regulation in a Cancer Stem Cell Model can Cause an Allee Effect

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The exact mechanisms of spontaneous tumor remission or complete response to treatment are phenomena in oncology that are not completely understood. We use a concept from ecology, the Allee effect, to help explain tumor extinction in a model of tumor growth that incorporates feedback regulation of stem cell dynamics, which occurs in many tumor types where certain signaling molecules, such as Wnts, are upregulated. Due to feedback and the Allee effect, a tumor may become extinct spontaneously or after therapy even when the entire tumor has not been eradicated by the end of therapy. We quantify the Allee effect using an ‘Allee index’ that approximates the area of the basin of attraction for tumor extinction. We show that effectiveness of combination therapy in cancer treatment may occur due to the increased probability that the system will be in the Allee region after combination treatment versus monotherapy. We identify therapies that can attenuate stem cell self-renewal, alter the Allee region and increase its size. We also show that decreased response of tumor cells to growth inhibitors can reduce the size of the Allee region and increase stem cell densities, which may help to explain why this phenomenon is a hallmark of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anastas JN, Moon RT (2013) Wnt signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 13(1):11–26. doi:10.1038/nrc3419

    Article  Google Scholar 

  • Arnold D, Polking J (1999) Ordinary differential equations using MATLAB, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Bachman J, Hillen T (2012) Mathematical optimization of the combination of radiation and differentiation therapies of cancer. Front Mol Cell Oncol. doi:10.3389/fonc.2013.00052

  • Bayin N, AS M, Placantonakis D (2014) Glioblastoma stem cells: molecular characteristics and therapeutic implications. World J Stem Cells 6(2):230–238

    Article  Google Scholar 

  • Bienz M, Clevers H (2000) Linking colorectal cancer to wnt signaling. Cell 103(2):311–320

    Article  Google Scholar 

  • Buchmann A, Alber M, Zartman J (2014) Sizing it up: the mechanical feedback hypothesis of organ growth regulation. Semin Cell Dev Biol 35:73–81

    Article  Google Scholar 

  • Caja L, Bellomo C, Moustakas A (2015) Transforming growth factor \(\beta \) and bone morphogenetic protein actions in brain tumors. FEBS Lett 589(14):1588–1597

    Article  Google Scholar 

  • Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, Egia A, Sasaki AT, Thomas G, Kozma SC, Papa A, Nardella C, Cantley LC, Baselga J, Pandolfi PP (2008) Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 118(9):3065–3074. doi:10.1172/JCI34739

    Google Scholar 

  • Cassidy J, Tabernero J, Twelves C, Brunet R, Butts C, Conroy T, Debraud F, Figer A, Grossmann J, Sawada N, Schöffski P, Sobrero A, Van Cutsem E, Díaz-Rubio E (2004) Xelox (capecitabine plus oxaliplatin): active first-line therapy for patients with metastatic colorectal cancer. J Clin Oncol 22(11):2084–2091. doi:10.1200/JCO.2004.11.069

    Article  Google Scholar 

  • Challis GB, Stam HJ (1900) The spontaneous regression of cancer. a review of cases from, 1900 to 1987. Acta Oncol 29(5):545–550

    Article  Google Scholar 

  • Cheah PY, Choo PH, Yao J, Eu KW, Seow-Choen F (2002) A survival-stratification model of human colorectal carcinomas with beta-catenin and p27kip1. Cancer 95(12):2479–2486. doi:10.1002/cncr.10986

    Article  Google Scholar 

  • Chen Y, Hughes-Fulford M (2001) Human prostate cancer cells lack feedback regulation of low-density lipoprotein receptor and its regulator, srebp2. Int J Cancer 91(1):41–45

    Article  Google Scholar 

  • Chinnaiyan AM, Prasad U, Shankar S, Hamstra DA, Shanaiah M, Chenevert TL, Ross BD, Rehemtulla A (2000) Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci USA 97(4):1754–1759. doi:10.1073/pnas.030545097

    Article  Google Scholar 

  • Ciurea M, Georgescu A, Purcaru S, Artene S, Emami G, Boldeanu M, Tache D, Dricu A (2014) Cancer stem cells: biological functions and therapeutically targeting. Int J Mol Sci 15(5):8169–8185

    Article  Google Scholar 

  • Clevers H, Loh KM, Nusse R (2014) Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346(6205):1248,012. doi:10.1126/science.1248012

    Article  Google Scholar 

  • Crosnier C, Stamataki D, Lewis J (2006) Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet 7(5):349–359. doi:10.1038/nrg1840

    Article  Google Scholar 

  • Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998. doi:10.1038/ni1102-991

    Article  Google Scholar 

  • Enderling H, Anderson A, Chaplain M, Beheshti A, Hlatky L, Hahnfeld P (2009) Paradoxical dependencies of tumor dormancy and progression on basic cell kinetics. Cancer Res 69(22):8814–8821

    Article  Google Scholar 

  • Everson TC, Cole WH (1968) Spontaneous regression of cancer. JB Saunders and Co, Philadelphia

    Google Scholar 

  • Freeman M (2000) Feedback control of intercellular signalling in development. Nature 408(6810):313–319. doi:10.1038/35042500

    Article  Google Scholar 

  • González-Sancho JM, Aguilera O, García JM, Pendás-Franco N, Peña C, Cal S, García de Herreros A, Bonilla F, Muñoz A (2005) The wnt antagonist DICKKOPF-1 gene is a downstream target of beta-catenin/TCF and is downregulated in human colon cancer. Oncogene 24(6):1098–1103. doi:10.1038/sj.onc.1208303

    Article  Google Scholar 

  • Greene WH (2003) Econometric analysis, 5th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  Google Scholar 

  • Hillen T, Enderling H, Hahnfeldt P (2013) The tumor growth paradox and immune system-mediated selection for cancer stem cells. Bull Math Biology 75(1):161–184

    Article  MathSciNet  MATH  Google Scholar 

  • Hobohm U (2001) Fever and cancer in perspective. Cancer Immunol Immunother 50(8):391–396

    Google Scholar 

  • Iwasa Y, Nowak M, Michor F (2006) Evolution of resistance during clonal expansion. Genetics 172:2557–2566

    Article  Google Scholar 

  • Jessy T (2011) Immunity over inability: the spontaneous regression of cancer. J Nat Sci Biol Med 2(1):43–49. doi:10.4103/0976-9668.82318

    Article  Google Scholar 

  • Korolev KS, Xavier JB, Gore J (2014) Turning ecology and evolution against cancer. Nat Rev Cancer 14(5):371–380. doi:10.1038/nrc3712

    Article  Google Scholar 

  • Krausova M, Korinek V (2014) Wnt signaling in adult intestinal stem cells and cancer. Cell Signal 26(3):570–579. doi:10.1016/j.cellsig.2013.11.032

    Article  Google Scholar 

  • Kwak EL, Clark JW, Chabner B (2007) Targeted agents: the rules of combination. Clin Cancer Res 13(18 Pt 1):5232–5237. doi:10.1158/1078-0432.CCR-07-1385

    Article  Google Scholar 

  • Lander AD, Gokoffski KK, Wan FYM, Nie Q, Calof AL (2009) Cell lineages and the logic of proliferative control. PLoS Biol 7(1):e15. doi:10.1371/journal.pbio.1000015

    Article  MathSciNet  Google Scholar 

  • Malhotra V, Perry MC (2003) Classical chemotherapy: mechanisms, toxicities and the therapeutic window. Cancer Biol Ther 2(4 Suppl 1):S2–4

    Google Scholar 

  • Mangsbo SM, Sandin LC, Anger K, Korman AJ, Loskog A, Tötterman TH (2010) Enhanced tumor eradication by combining ctla-4 or pd-1 blockade with cpg therapy. J Immunother 33(3):225–235. doi:10.1097/CJI.0b013e3181c01fcb

    Article  Google Scholar 

  • Massagué J, Blain SW, Lo RS (2000) Tgfbeta signaling in growth control, cancer, and heritable disorders. Cell 103(2):295–309

    Article  Google Scholar 

  • Matchett K, Lappin T (2014) Concise reviews: cancer stem cells: from concept to cure. Stem Cells 32(10):2563–2570

    Article  Google Scholar 

  • Mathijssen RHJ, Sparreboom A, Verweij J (2014) Determining the optimal dose in the development of anticancer agents. Nat Rev Clin Oncol 11(5):272–281. doi:10.1038/nrclinonc.2014.40

    Article  Google Scholar 

  • Meacham C, Morrison S (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501(7467):328–337

    Article  Google Scholar 

  • Mertins S (2014) Cancer stem cells: a systems biology view of their role in prognosis and therapy. Anticancer Drugs 25(4):353–367

    Article  Google Scholar 

  • Najdi R, Holcombe RF, Waterman ML (2011) Wnt signaling and colon carcinogenesis: beyond apc. J Carcinog 10:5. doi:10.4103/1477-3163.78111

    Article  Google Scholar 

  • Nakamura T, Matsumoto K, Kiritoshi A, Tano Y, Nakamura T (1997) Induction of hepatocyte growth factor in fibroblasts by tumor-derived factors affects invasive growth of tumor cells: in vitro analysis of tumor-stromal interactions. Cancer Res 57(15):3305–3313

    Google Scholar 

  • O’Connor M, Xiang D, Shigdar S, Macdonald J, Li Y, Wang T, Pu C, Wang Z, Qiao L, Duan W (2014) Cancer stem cells: a contentious hypothesis now moving forward. Cancer Lett 344(2):180–187

    Article  Google Scholar 

  • Perko L (2001) Differential equations and dynamical systems, vol 7, (3rd edn). Springer, New York. http://www.loc.gov/catdir/enhancements/fy0826/00058305-d.html

  • Pinto D, Clevers H (2005) Wnt, stem cells and cancer in the intestine. Biol Cell 97(3):185–196. doi:10.1042/BC20040094

    Article  Google Scholar 

  • Poleszczuk J, Hahnfeldt P, Enderling H (2015) Evolution and phenotype selection of cancer stem cells. PLoS Comput Biol 11(3):e1004,025

    Article  Google Scholar 

  • Radtke F, Clevers H (2005) Self-renewal and cancer of the gut: two sides of a coin. Science 307(5717):1904–1909. doi:10.1126/science.1104815

    Article  Google Scholar 

  • Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434(7035):843–850. doi:10.1038/nature03319

    Article  Google Scholar 

  • Rhodes A, Hillen T (2016) Mathematical modelling of the role of survivin on dedifferentiation and radioresistance in cancer (submitted)

  • Scott J, Hjelmeland A, Chinnaiyan P, Anderson A (2014) Microenvironmental variables must influence intrinsic phenotype parameters of cancer stem cells to affect tumourigenicity. PLoS Comput Biol 10(1):e1003,433

    Article  Google Scholar 

  • Sottoriva A, Verhoeff J, Borovski T, McWeeney S, Naurnov L, Medema J, Sloot P, Vermuelen L (2010) Cancer stem cell tumor model reveals invasive morphology and increased phenotypical heterogeneity. Cancer Res 70(1):46–56

    Article  Google Scholar 

  • Sottoriva A, Vermuelen L, Tavare S (2011) Modeling evolutionary dynamics of epigenetic mutations in hierarchically organized tumors. PLoS Comput Biol 7(5):e1001,132

    Article  Google Scholar 

  • Stephens PA, Sutherland WJ, Freckleton RP (1999) What is the Allee effect? Oikos 87(1):185–190

    Article  Google Scholar 

  • Uno T, Takeda K, Kojima Y, Yoshizawa H, Akiba H, Mittler RS, Gejyo F, Okumura K, Yagita H, Smyth MJ (2006) Eradication of established tumors in mice by a combination antibody-based therapy. Nat Med 12(6):693–698. doi:10.1038/nm1405

    Article  Google Scholar 

  • Youssefpour H, Li X, Lander AD, Lowengrub JS (2012) Multispecies model of cell lineages and feedback control in solid tumors. J Theor Biol 304:39–59. doi:10.1016/j.jtbi.2012.02.030

    Article  Google Scholar 

  • Zhou BBS, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB (2009) Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 8(10):806–823. doi:10.1038/nrd2137

    Article  Google Scholar 

Download references

Acknowledgments

AK gratefully acknowledges support from Predoctoral Training Grant T32HD060555 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NIH/NICHD). JL would like to thank the National Institute of Health, National Cancer Institute, for funding through the Grants P50GM76515 for a Center of Excellence in Systems Biology at the University of California, Irvine, and P30CA062203 for the Chao Comprehensive Cancer Center at the University of California, Irvine. JL also gratefully acknowledges support from the National Science Foundation, Division of Mathematical Sciences. The research of TH is supported by NSERC. Part of this work was carried out during a research visit of TH to the Mathematical Biosciences Institute (MBI) in Ohio, USA. The authors are grateful to the anonymous referees for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anna Konstorum or John Lowengrub.

Appendices

Appendix 1: Approximation of the Separatrix for System (9) using the Stable Manifold Theorem.

We use the Stable Manifold Theorem (SMT) to prove that the separatrix described in Theorem 1 near the equilibrium point \(\mathbf {P_2}(S_2,A_2)\) of system (9) exists and to approximate it. We follow the technique presented in (Perko 2001). We recall that \(\mathbf {P_2}\) occurs at the unique intersection of the curves \(\{p(S,a) = 0.5\}\) and \(\{F(S,a) = 0\}\). We state the SMT here for reference.

Theorem 2

(The Stable Manifold Theorem). Let E be an open subset of \({\mathbb {R}}^n\) containing the origin, let \(\mathbf {f} \in C^1(E)\), and let \(\phi _t\) be the flow of the nonlinear system \(\dot{\mathbf {x}} = \mathbf {f(x)}\). Suppose that \(\mathbf {f(0) = 0}\) and that \(D\mathbf {f(0)}\) has k eigenvalues with negative real part and \(n-k\) eigenvalues with positive real part. Then there exists a k-dimensional differentiable manifold M tangent to the stable subspace \(E^m\) of the linear system \(\dot{\mathbf {x}} = \mathbf {Ax}\) at \(\mathbf {0}\) where \(\varvec{A} = D \mathbf {f(0)}\), such that for all \(t \ge 0\), \(\phi _t(M) \subset M\) for all \(\mathbf {x_0} \in M\) and

$$\begin{aligned} \lim _{t \rightarrow \infty } \phi _t (\mathbf {x_0}) = \mathbf {0}. \end{aligned}$$

In our case, we make an affine change of coordinates to system (9) which sends \(\mathbf {P_2} \rightarrow {\mathbf {0}}\) and use the constructive proof of the SMT (see Perko 2001, p. 108) to find the separatrix M.

1.1 Affine Change of Coordinates

To apply the SMT, we need to first make the affine change of coordinates: \(\mathbf {c}: (S,a) \rightarrow (S,a) - (S_2,A_2)\). We let \((S^*,a^*) = \mathbf {c}(S,a)\). Then, applying \(\mathbf {c}\) to (9), and noting that \((S,a) = (S^*,a^*) + (S_2,A_2)\), and \(\frac{\partial }{\partial t}(S,a) = \frac{\partial }{\partial t}((S^*,a^*)+(S_2,A_2)) = \frac{\partial }{\partial t}(S^*,a^*)\), we obtain

$$\begin{aligned} \begin{aligned} \dot{S^*}&= (2p^*(S^*, a^*) -1)k(S^* + S_2) = f^*_1(S^*,a^*), \\ \dot{a^*}&= (a^* + A_2)\left( \frac{\beta (S^* + S_2)(a^* + A_2)}{1+ \lambda (a^* +A_2)} - 1 \right) = f^*_2(S^*,a^*), \\ p^*(S^*, a^*)&=\frac{\xi _1(a^* + A_2)}{1+ \xi _1 (a^* + A_2)} \frac{1}{1+ \xi _2(S^* + S_2)}. \end{aligned} \end{aligned}$$
(16)

The Jacobian for (16) is

$$\begin{aligned} \varvec{J}^*(S^*,a^*) = \left( \begin{array} {cc} 2p^*_{S^*} k (S^* + S_2) + (2p^* -1)k &{} 2p^*_{a^*}k(S^* + S_2) \\ (f_1)_{S^*} &{} (f_1)_{a^*} \end{array} \right) , \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} p^*_{S^*}&= \frac{-\xi _1\xi _2(a^* + A_2)}{(1+ \xi _1 (a^* + A_2))(1+\xi _2(S^*+ S_2))^2}, \\ p^*_{a^*}&= \frac{\xi _1}{(1+\xi _2(S^* + S_2)) (1+ \xi _1(a^* + A_2))^2}, \\ (f^*_2)_{S^*}&= \frac{\beta (a^* + A_2)^2}{1+\lambda (a^* + A_2)}, \\ (f^*_2)_{a^*}&= \frac{\beta (S^* + S_2)(a^* + A_2)(2+ \lambda (a^* + A_2))}{(1+ \lambda (a^* + A_2))^2} - 1. \end{aligned} \end{aligned}$$
(17)

In this coordinate system, \((S^*,a^*) = (0,0)\) is an equilibrium point and \(P^*(0,0)\) corresponds to \(\mathbf {P_2}(S_2,A_2)\). To use the SMT, we need to first determine \(\varvec{A} = D\mathbf {f}(\mathbf {0}) = \varvec{J}^*(0,0)\). We have

$$\begin{aligned} \varvec{A}=\varvec{J}^*(0,0) = \left( \begin{array}{cc} 2p^*_{S^*} (0,0) k S_2 &{} 2p^*_{a^*} (0,0) k S_2 \\ (f_2)_{S^*} (0,0) &{} (f_2)_{a^*} (0,0) \end{array} \right) . \end{aligned}$$
(18)

We first note, as in the original \(\varvec{J}(S_1,S_2)\), that since \(p^*_{S^*} <0\) and \((f^*_2)_{a^*}(0,0)>0\), \(2p^*_{S^*} (0,0) k S_2(f_2)_{a^*} (0,0) <0\) and since \(p^*_{a^*}>0\) and \((f_2^*)_{S^*}>0\), \( 2p^*_{a^*} (0,0) k S_2 (f_2)_{S^*} (0,0) >0\). Therefore,

$$\begin{aligned} \det \varvec{J}^*(0,0)=2p^*_{S^*} (0,0) k S_2)(f_2^*)_{a^*} (0,0) - 2p^*_{a^*} (0,0) k S_2 (f^*_2)_{S^*} (0,0) <0, \end{aligned}$$

and hence \(\varvec{J}^*(0,0)\) has one positive and one negative eigenvalue, and \(P^*\) is a saddlepoint. We also recall that \(S_2\) and \(A_2\) satisfy

$$\begin{aligned} {\left\{ \begin{array}{ll} \dfrac{\xi _1A_2}{1+\xi _1 A_2} \dfrac{1}{1+\xi _2 S_2} = 0.5 , \\ \dfrac{\beta S_2 A_2}{1+ \lambda A_2}=1. \end{array}\right. } \end{aligned}$$
(19)

Using (19), we simplify (17) to calculate the elements of \({\varvec{A}}\),

$$\begin{aligned} \begin{aligned} p^*_{S^*} (0,0)&= \frac{-A_2\xi _1\xi _2}{(1+ \xi _1 A_2)(1+\xi _2S_2)^2} = \frac{- \xi _2}{2 (1+\xi _2 S_2)},\\ p^*_{a^*} (0,0)&= \frac{1}{(1+\xi _2S_2) (1+ \xi _1A_2)^2} = \frac{1}{2 A_2 (1+\xi _1 A_2)}, \\ (f^*_2)_{S^*} (0,0)&= \frac{\beta A_2^2}{1+\lambda A_2} = \frac{A_2}{S_2}, \\ (f^*_2)_{a^*} (0,0)&= \frac{\beta S_2 A_2(2+ \lambda A_2)}{(1+ \lambda A_2)^2} - 1 = \frac{2+\lambda A_2}{1+ \lambda A_2} - 1 = \frac{1}{1+\lambda A_2}. \end{aligned} \end{aligned}$$
(20)

Substituting (20) into (18), we have the following expression for \(\varvec{A}=\varvec{J}^*(0,0)\),

$$\begin{aligned} \varvec{A}=\left( \begin{array} {cc}\dfrac{- \xi _2kS_2}{1+\xi _2 S_2} &{} \dfrac{kS_2}{A_2 (1+\xi _1 A_2)} \\ \dfrac{A_2}{S_2} &{} \dfrac{1}{1+\lambda A_2} \end{array} \right) . \end{aligned}$$
(21)

1.2 Preliminary Calculations for the SMT

Following (Perko 2001) and taking \(\mathbf {x}= (S^*,a^*)\), we can rewrite the system (16) as

$$\begin{aligned} \dot{\mathbf {x}} = \mathbf {Ax} + \mathbf {F(x)}, \end{aligned}$$
(22)

where \(\varvec{A}=\varvec{J}^*(0,0)\) and \(\mathbf {F(x)} = \mathbf {f^*(x)} - \mathbf {Ax}\). We next need to find an invertible matrix \(\varvec{C}\) such that

$$\begin{aligned} \varvec{B} = \varvec{C}^{-\mathbf{1}}\varvec{AC}= \left( \begin{array} {cc} L_1 &{} 0 \\ 0 &{} L_2 \end{array} \right) , \end{aligned}$$
(23)

where \(L_1\) and \(L_2\) are the negative and positive eigenvalues, respectively, of \(\varvec{A}=(A_{ij})\). We first calculate the trace, T, and determinant, D, of A,

$$\begin{aligned} T&= A_{11} + A_{22} = \dfrac{- \xi _2kS_2}{1+\xi _2 S_2} + \frac{1}{1+\lambda A_2},\\ D&= A_{11}A_{22} - A_{12}A_{21} =\dfrac{- \xi _2kS_2}{1+\xi _2 S_2} \dfrac{1}{1+\lambda A_2} - \dfrac{kS_2}{A_2 (1+\xi _1 A_2)} \dfrac{A_2}{S_2} \\&= \dfrac{-\xi _2 k S_2}{(1+\xi _2 S_2)(1+\lambda A_2)} - \dfrac{k}{1+\xi _1 A_2}. \end{aligned}$$

We note, from the calculations above, that \(D<0\). We proceed to calculate \(0 = \det (A - L I)\) to obtain the quadratic equation

$$\begin{aligned} 0=L^2 - (A_{11} + A_{22}) L + (A_{11}A_{22} - A_{12}A_{21}) = L^2 - TL + D. \end{aligned}$$

The quadratic formula gives us:

$$\begin{aligned} L_{1,2} = \frac{T \mp (T^2 - 4D)^{1/2}}{2} = T/2 \mp (T^2/4 - D)^{1/2}. \end{aligned}$$

Since \(D<0\), we find that \(L_{1,2}\) are both real and have opposite sign; hence, \(L_1 < 0 <L_2\). It can be verified that \(\mathbf {v}_1 = [(L_1 - A_{22}), A_{21}]^T\) and \(\mathbf {v}_2 = [ (L_2 - A_{22}), A_{21}]^T\) are eigenvectors corresponding (respectively) to \(L_1\) and \(L_2\). Here the superscript T denotes the transpose. Therefore, we have

$$\begin{aligned}&\varvec{A} = \varvec{C B C}^{-1} \\&\quad = \dfrac{1}{A_{21}(L_1-L_2)}\left( \begin{array} {cc} L_1 - A_{22} &{} L_2 - A_{22} \\ A_{21} &{} A_{21} \end{array} \right) \left( \begin{array} {cc} L_1 &{} 0 \\ 0 &{} L_2 \end{array} \right) \left( \begin{array} {cc} A_{21} &{} -L_2 + A_{22} \\ - A_{21} &{} L_1 - A_{22} \end{array} \right) \end{aligned}$$

We make another change of variables, taking \(\mathbf {y}=\varvec{C}^{-1}(\mathbf {x})\), and writing (22) as

$$\begin{aligned} \dot{\mathbf {y}} = \mathbf {By} +\mathbf {G(y)}, \end{aligned}$$
(24)

where \(\varvec{B}\) is from (23) and \(\mathbf {G(y)} = \mathbf {C^{-1}F(Cy)}\).

1.3 Applying the SMT

By the SMT (taking \(\mathbf {a}=(a_1,a_2)\)),

$$\begin{aligned} \mathbf {u}(t,\mathbf {a}) = \varvec{U}(t)\mathbf {a}+\int _0^t \varvec{U}(t-s) \mathbf {G}(\mathbf {u}(s,\mathbf {a}))ds - \int _t^\infty \varvec{V}(t-s)\mathbf {G}(\mathbf {u}(s,\mathbf {a}))ds \end{aligned}$$
(25)

is the solution to (24), where

$$\begin{aligned} \varvec{U}(t) = \left( \begin{array} {cc} e^{L_1 t} &{} 0 \\ 0 &{} 0 \end{array} \right) \text{ and } \varvec{V}(t) = \left( \begin{array} {cc} 0 &{} 0 \\ 0 &{} e^{L_2t} \end{array} \right) . \end{aligned}$$

We solve for \(\mathbf {u}\) using the method of successive approximation. We let \(\mathbf {u}^{(0)} (t,\mathbf {a}) = \mathbf {0}\) and

$$\begin{aligned} \mathbf {u}^{(j+1)} (t,a) = \varvec{U}(t)\mathbf {a} + \int _0^t \varvec{U}(t-s) \mathbf {G}(\mathbf {u}^{(j)} (s,\mathbf {a})) ds - \int _t^\infty \varvec{V}(t-s) \mathbf {G}(\mathbf {u}^{(j)} (s,\mathbf {a}) )ds. \end{aligned}$$
(26)

To solve for \(j=1\), we note that \(\mathbf {G(0)}= \mathbf {{C}^{-1} F(C\cdot 0)} = \mathbf {{C}^{-1}F(\mathbf {0}) }= \mathbf {0}\) since \(f_1(0,0) = f_2(0,0) = 0\). Therefore,

$$\begin{aligned} \mathbf {u}^{(1)} (t,\mathbf {a}) = \left( \begin{array} {c} e^{L_1 t} a_1 \\ 0 \end{array} \right) . \end{aligned}$$

For the next approximation, we first calculate \(\varvec{U}(t-s) \mathbf {G}(\mathbf {u}^{(1)}(s,\mathbf {a})) = \varvec{U}(t-s) \varvec{C}^{-1} \mathbf {F(Cw)} = \varvec{H}_1 \mathbf {F(Cw)}\), where \(\varvec{H}_1 = \varvec{U}(t-s)\varvec{C}^{-1}\) and \(\mathbf {w}= (e^{L_1 s} a_1, 0)^T \). Simplifying \(\varvec{H}_1\) gives us:

$$\begin{aligned} \varvec{H}_1&= \varvec{U}(t-s) \varvec{C}^{-1} = \dfrac{1}{A_{21}(L_1 - L_2)} \left( \begin{array} {cc} e^{L_1(t-s)} &{} 0 \\ 0 &{} 0 \end{array} \right) \left( \begin{array} {cc} A_{21} &{} A_{22} - L_2 \\ -A_{21} &{} L_1 - A_{22}\end{array} \right) \\&= e^{L_1(t-s)} \left( \begin{array} {cc} \frac{1}{L_1-L_2} &{} \frac{A_{22} - L_2}{A_{21}(L_1 - L_2)} \\ 0 &{} 0 \end{array} \right) . \end{aligned}$$

Then,

$$\begin{aligned} \varvec{H}_1 \mathbf {F}(\varvec{C}\mathbf {w})= & {} e^{L_1(t-s)} \left( \begin{array} {cc} \frac{1}{L_1-L_2} &{} \frac{A_{22} - L_2}{A_{21}(L_1 - L_2)} \\ 0 &{} 0 \end{array} \right) \nonumber \\&\quad \times \left[ \left( \begin{array} {c} f_1 (\mathbf {Cw}) \\ f_2 (\mathbf {Cw}) \end{array} \right) - e^{L_1 s} a_1 \left( \begin{array} {cc} A_{11} &{} A_{12} \\ A_{21} &{} A_{22} \end{array} \right) \left( \begin{array} {c} L_1 - A_{22} \\ A_{21} \end{array} \right) \right] \nonumber \\= & {} e^{L_1(t-s)} \left( \begin{array}{c} \frac{f_1(\mathbf {Cw})}{(L_1-L_2)} + \frac{f_2(\mathbf {Cw}) A_{22} - L_2}{A_{21}(L_1 - L_2)} \\ 0 \end{array}\right) \nonumber \\&-\,e^{L_1 t}a_1 \left( \begin{array} {c}\frac{L_1(T-L_2) -D}{L_1 - L_2} \\ 0 \end{array} \right) . \end{aligned}$$
(27)

Hence,

$$\begin{aligned} \int _0^t \varvec{U}(t-s) \mathbf {G}(\mathbf {u}^{(1)}(s,\mathbf {a}))= & {} \int _0^t e^{L_1(t-s)} \left( \begin{array} {c} \frac{f_1(\mathbf {Cw})}{(L_1-L_2)} + \frac{f_2(\mathbf {Cw}) A_{22} - L_2}{A_{21}(L_1 - L_2)} \\ 0 \end{array} \right) \nonumber \\&ds - t \left[ e^{L_1 t}a_1 \left( \begin{array} {c} \frac{L_1(T-L_2) -D}{L_1 - L_2} \\ 0 \end{array} \right) \right] . \end{aligned}$$
(28)

We note that our stable manifold will be of the form \(y_2= \psi ^{(2)}_2(y_1)\), where \(\psi ^{(2)}_2(a_1) = u^{(2)}_2(0,a_1,0)\). Since \(\mathbf {U}(t)\mathbf {a}\) and (28) only contribute trivially to \(u^{(2)}_2\), we will not perform further calculations on them.

Next, we calculate \(\varvec{V}(t-s) \mathbf {G}(\mathbf {u}^{(1)}(s,\mathbf {a})) = \varvec{V}(t-s) \varvec{C}^{-1} \mathbf {F}(\mathbf {Cw}) = \varvec{H}_2 \mathbf {F}(\mathbf {Cw})\). As before, we first calculate \(\varvec{H}_2\):

$$\begin{aligned} \varvec{H}_2&= \varvec{V}(t-s) \varvec{C}^{-1} = \dfrac{1}{A_{21}(L_1 - L_2)} \left( \begin{array}{cc} 0 &{} 0 \\ 0 &{} e^{L_2(t-s)} \end{array} \right) \left( \begin{array}{cc} A_{21} &{} A_{22} - L_2 \\ -A_{21} &{} L_1 - A_{22}\end{array} \right) \nonumber \\&= e^{L_2(t-s)}\left( \begin{array} {cc} 0 &{} 0 \\ \frac{-1}{L_1 - L_2} &{} \frac{L_1 - A_{22}}{A_{21}(L_1-L_2)}\end{array} \right) . \end{aligned}$$

We thus have,

$$\begin{aligned} \varvec{H}_2\mathbf {F}(\mathbf {Cw})= & {} e^{L_2(t-s)} \left( \begin{array} {cc} 0 &{} 0 \\ \frac{-1}{L_1 - L_2} &{} \frac{L_1 - A_{22}}{A_{21}(L_1-L_2)}\end{array} \right) \nonumber \\&\times \left[ \left( \begin{array} {c} f_1 (\mathbf {Cw}) \\ f_2 (\mathbf {Cw}) \end{array} \right) - e^{L_1 s} a_1 \left( \begin{array} {cc} A_{11} &{} A_{12} \\ A_{21} &{} A_{22} \end{array} \right) \left( \begin{array} {c} L_1 - A_{22}\\ A_{21} \end{array} \right) \right] \nonumber \\= & {} e^{L_2(t-s)} \left( \begin{array} {c} 0 \\ \frac{-f_1(\mathbf {Cw})}{L_1 - L_2} + \frac{f_2(\mathbf {Cw})(L_1 - A_{22})}{A_{21} (L_1- L_2)}\end{array} \right) \nonumber \\&-\, e^{s(L_1-L_2)}e^{L_2t}\begin{bmatrix}0 \\ g(L_1,L_2,A_{21},A_{22})\end{bmatrix}. \end{aligned}$$
(29)

Taking the integral of the right-hand term on the domain \([t,\infty )\) gives us \(\frac{e^{L_1 t}}{L_2-L_1}(0, g(\cdot ))^T\). We find that \(g(\cdot ) = L_1^2 - TL_1 + D = 0\). Therefore, this term does not contribute to the stable manifold.

The SMT allows us to calculate the second approximation to the separatrix, \(\hbox {M}^* = u_2^{(2)}(0,a_1,0)\), as

$$\begin{aligned} {\text {M}}^* = \frac{1}{L_1 - L_2} \left( \int _0^\infty - e^{-L_2s}f^*_1 (\mathbf {Cw}) ds + \frac{L_1 - A_{22}}{A_{21}} \int _0^\infty e^{-L_2s} f^*_2 (\mathbf {Cw}) ds \right) , \end{aligned}$$
(30)

where \(\mathbf {Cw} = e^{L_1 s} a_1 (L_1 - A_{22}, A_{21})^T\), and by (16),

$$\begin{aligned} f^*_1(\mathbf {Cw})&=\left( \dfrac{2\xi _1(e^{L_1s}a_1A_{21} + A_2)}{(1+ \xi _1(e^{L_1s}a_1A_{21} +A_2))(1+\xi _2(e^{L_1s}a_1(L_1-A_{22})+S_2))} -1 \right) \nonumber \\&\quad k (e^{L_1s}a_1(L_1-A_{22}) +S_2), \end{aligned}$$
(31)
$$\begin{aligned} f^*_2(\mathbf {Cw})&= (e^{L_1s}a_1A_{21} + A_2)\left( \frac{\beta (e^{L_1s}a_1(L_1-A_{22}) \!+\! S_2)(e^{L_1s}a_1A_{21} + A_2)}{1+ \lambda (e^{L_1s}a_1A_{21} +A_2)} - 1 \right) . \end{aligned}$$
(32)

We now solve \(- \int _0^{\infty } I_1 ds=\int _0^\infty e^{-L_2s}f^*_1 (\mathbf {Cw}) ds \) and \(\int _0^\infty I_2ds=\int _0^\infty e^{-L_2s} f^*_2 (\mathbf {Cw}) ds \). Substituting (31) into \(I_1\), we obtain

$$\begin{aligned} I_1= & {} \left( \frac{ 2\xi _1 e^{-L_2 s} (e^{L_1 s } a_1 A_{21} + A_2)}{(1+ \xi _1(e^{L_1s}a_1A_{21} +A_2))(1+\xi _2(e^{L_1s}a_1(L_1-A_{22})+S_2))} - e^{-L_2 s} \right) \nonumber \\&k (e^{L_1 s} a_1 (L_1 - A_{22} )+ S_2). \end{aligned}$$
(33)

We split \(I_1\) into three parts:

$$\begin{aligned} I_1= & {} I_{11} + I_{12} + I_{13} \\= & {} \frac{ (2 \xi _1e^{-L_2 s} (e^{L_1 s } a_1 A_{21} + A_2)k(e^{L_1 s} a_1 (L_1 - A_{22} )+ S_2) }{(1+ \xi _1(e^{L_1s}a_1A_{21} +A_2))(1+\xi _2(e^{L_1s}a_1(L_1-A_{22})+S_2)}\\&-\,ke^{(L_1-L_2)s} a_1 (L_1-A_{22}) - e^{-L_2 s} k S_2. \end{aligned}$$

We can directly integrate \(I_{12}\) and \(I_{13}\) to obtain

$$\begin{aligned} -\int _0^\infty I_1ds = -\int _0^\infty I_{11} ds - \frac{ka_1 (L_1 - A_{22})}{L_1 - L_2}+\frac{k S_2}{L_2}. \end{aligned}$$
(34)

We now work to simplify \(I_{11}\) by taking \(u = e^{L_1 s}\). The change of variables gives us

$$\begin{aligned} \begin{aligned} -\int _0^\infty I_{11} ds&= -\frac{2k}{L_1}\int _{u_1}^{u_2} u^{-T/L_1} \\&\quad \times \frac{(ua_1 A_{21} + A_2) (u a_1(L_1 - A_{22}) +S_2)}{ (1+ \xi _1 (u a_1 A_{21} + A_2))(1+ \xi _2(u a_1 (L_1 - A_{22}) + S_2))}du \\&=\frac{2\xi _1k}{L_1}\int _0^1 u^{-T/L_1} \frac{(uc_1 + A_2) (u c_2 +S_2)}{ (1+ \xi _1 (u c_1 + A_2))(1+ \xi _2(u c_2 + S_2))}du, \end{aligned} \end{aligned}$$
(35)

where we find that \(u_1 = 1\) and \(u_2 = \lim _{s\rightarrow \infty } e^{L_1 s} = 0\) since \(L_1 < 0\). We take \(c_1 = a_1 A_{21}\) and \(c_2 = a_1(L_1 - A_{22})\).

We would like to do a partial fraction decomposition for the integrand term in (35) not containing \(u^{-T/L_1}\), \(I_{11}^*\). Noting that both the numerator and denominator are of degree 2, we first perform long division to obtain a fraction p / q where deg \(p< \) deg q. Fully multiplying the terms in the fraction, and setting \(c_3 = A_2c_2 + S_2c_1\) and \(c_4 = A_2 \xi _1 + S_2 \xi _2 + A_2S_2 \xi _1 \xi _2 +1\) gives us

$$\begin{aligned} \begin{aligned} I_{11}^*&= \frac{ u^2 c_1 c_2 + u c_3 + A_2 S_2}{u^2 \xi _1 \xi _2 c_1 c_2 + u(\xi _1 \xi _2 c_3 + \xi _2 c_2 + \xi _1 c_1) + c_4}\\&=\frac{1}{\xi _1 \xi _2} - \frac{u (c_2 / \xi _1 + c_1 / \xi _2)+ (A_2 / \xi _2 + S_2 / \xi _1 + 1/(\xi _1\xi _2))}{(1+ \xi _1 (u c_1 + A_2))(1+ \xi _2(u c_2 + S_2))}. \end{aligned} \end{aligned}$$
(36)

Setting \(c_5 = c_2 / \xi _1 + c_1 / \xi _2\) and \(c_6 = A_2 / \xi _2 + S_2/ \xi _1 + 1/(\xi _1 \xi _2)\), the second term of (36) becomes

$$\begin{aligned} \frac{u c_5 + c_6}{(1+ \xi _1 (u c_1 + A_2))(1+ \xi _2(u c_2 + S_2))} = \frac{N_1}{(1+ \xi _1 (u c_1 + A_2))} + \frac{N_2}{(1+ \xi _2(u c_2 + S_2))}, \end{aligned}$$

where

$$\begin{aligned} N_1= & {} \frac{-c_5(\xi _1 A_2 +1) + c_1 c_6\xi _1}{\xi _1\xi _2(c_1S_2 - A_2c_2)+c_1\xi _1 - c_2\xi _2},\\ N_2= & {} \frac{-c_5(\xi _2 S_2 +1) + c_2 c_6\xi _2}{\xi _1\xi _2(-c_1S_2 +A_2c_2)-c_1\xi _1 + c_2\xi _2}. \end{aligned}$$

Therefore, the integrand in (35), \(u^{-T/L_1}I_{11}^*\), can be written as

$$\begin{aligned} u^{-T/L_1}I_{11}^*=u^{-T/L_1} \left( \frac{1}{\xi _1 \xi _2} - \frac{N_1}{(1+ \xi _1 (u c_1 + A_2))} - \frac{N_2}{(1+ \xi _2(u c_2 + S_2))}\right) . \end{aligned}$$

We note that the first term can be integrated,

$$\begin{aligned} \frac{2\xi _1k}{L_1\xi _1 \xi _2 }\int _0^1 u^{-T/L_1} du= \frac{-2k}{L_2 \xi _1 \xi _2} u^{-L_1/L_2}, \end{aligned}$$

where the first equality comes about from the observation that \(-T/L_1 = -1 - L_2/L_1\). To summarize, if we set

$$\begin{aligned} I^{**}_{11} = u^{-T/L_1}\left( \frac{N_1}{(1+ \xi _1 (u c_1 + A_2))} + \frac{N_2}{(1+ \xi _2(u c_2 + S_2))}\right) , \end{aligned}$$

we can rewrite (34) as

$$\begin{aligned} -\int _0^\infty I_1 ds= \frac{k S_2}{L_2}-\frac{k C_2}{L_1 - L_2} -\frac{2\xi _1k}{L_2 \xi _1 \xi _2} - \frac{2\xi _1k}{L_1} \int _0^1 I^{**}_{11} du. \end{aligned}$$
(37)

To solve \(\int _0^1 I^{**}_{11} du\), we will need to use a hypergeometric function and the beta function. Indeed, we have the formula

$$\begin{aligned} \int _0^1 t^{b-1} (1-t)^{c-b-1}(1-tx)^{-a}dt = B(b,c-b) _2F_1(a,b;c;x), \end{aligned}$$

where \(B(a,b) = \int _0^a t^{a-1}(1-t)^{b-1} dt\) and \(_2F_1(a_1,a_2;b_1;x) = \sum _{k=0}^\infty \frac{(a_1)_k(a_2)_k}{(b_1)_k} \frac{x^k}{k!}\). In our case, we split \(I^{**}_{11}\) naturally as a sum of two terms, and for the first integral, we have \(b-1 = -T/L_1\), hence \(b = 1-T/L_1 = -L_2/L_1\), \(0=c-b-1\), hence \(c = b+1 = 2-T/L_1\), \(a=1\), and \(x = (-\xi _1 C_1)/(\xi _1 A_2 +1)\), where we have pulled \((\xi _1 A_2 +1)^{-1}\) from the denominator. We want to first find an explicit representation for \(B(b,c-b)\),

$$\begin{aligned} B(b,c-b) = B(-T/L_1+1,1) = \int _0^1 t^{-T/L_1} dt = \frac{1}{-L_2/L_1} t^{-T/L_1 +1}|^1_0 = \frac{-L_1}{L_2}. \end{aligned}$$

Using the hypergeometric function and (37), our final formula for \(-\int _0^\infty I_1 ds = \int _0^\infty -e^{L_2 s} f_1^* (\mathbf {Cw})ds\) is

$$\begin{aligned} -\int _0^\infty I_1 ds= & {} k\left( \frac{S_2}{L_2} - \frac{C_2}{L_1-L_2}-\frac{2}{L_2 \xi _2} + \frac{2\xi _1N_1}{L_2(\xi _1 A_2 +1)} {}_2F_1^1\right. \nonumber \\&\left. + \frac{2\xi _1 N_2}{L_2(\xi _2 S_2 +1)} {}_2F_1^2 \right) , \end{aligned}$$
(38)

where

$$\begin{aligned} _2F_1^1= 2F_1\left( 1,-L_2/L_1;1-L_2/L_1; \frac{-\xi _1 c_1}{\xi _1 A_2 +1}\right) \end{aligned}$$

and

$$\begin{aligned} _2F_1^2 = 2F_1\left( 1,-L_2/L_1;1-L_2/L_1; \frac{-\xi _2 c_2}{\xi _2 S_2 +1}\right) \end{aligned}$$

We now begin work to solve \(\int _0^\infty I_2 ds = \int _0^\infty e^{-L_2 s} f_2(\mathbf {Cw}) ds\). Using the same substitution as earlier, i.e., \(u = e^{L_1 s}\), and again taking \(c_1 = a_1 A_{21}\) and \(c_2 = a_1 (L_1 - A_{22})\), we obtain

$$\begin{aligned} \int _0^\infty I_2 ds= & {} \frac{-1}{L_1} \int _0^1 u^{-T/L_1} (uc_1 + A_2) \left( \frac{\beta (uc_2 + S_2)(uc_1 + A_2)}{1+ \lambda (uc_1 +A_2)} - 1 \right) , \nonumber \\= & {} \frac{-\beta }{L_1} \int _0^1 u^{-T/L_1} \frac{(uc_2 + S_2)(uc_1 + A_2)^2}{1+ \lambda (uc_1 + A_2)}du + \frac{1}{L_1}\int _0^1 u^{-T/L_1 +1} c_1\nonumber \\&+ u^{-T/L_1} A_2 du, \nonumber \\= & {} \frac{-\beta }{L_1} \int _0^1 u^{-T/L_1}\left( c_3^* u^2 + c_4^*u + c_5^* + \frac{c_6^*}{\lambda u c_1 + \lambda A_2 +1}\right) du\nonumber \\&+ \frac{c_1}{L_1 - L_2} + \frac{ -A_2}{L_2}, \end{aligned}$$
(39)

where the last equality comes from long division in the first integral and full integration of the second. The constants are as follows:

$$\begin{aligned} c_3^*= & {} \frac{c_1 c_2}{\lambda }\text{, } c_4^* = \frac{c_2 A_2 + c_1S_2}{\lambda } - \frac{c_2}{\lambda ^2}\text{, } c_5^* = \frac{c_2}{c_1 \lambda ^3} \\&+\, \frac{S_2(A_2-1)}{\lambda ^2} \text{, } c_6^* = \frac{-1}{\lambda ^3} + \frac{S_2-(A_2c_2/c_1)}{\lambda ^2}. \end{aligned}$$

We concentrate now on the first integral in (39). The first three terms multiplied by \(u^{-T/L_1}\) can be integrated in a straightforward manner. The last one can be integrated using a hypergeometric function as described earlier. We thus obtain

$$\begin{aligned} \int _0^\infty I_2 ds = -\beta \left( \frac{c_3^*}{2 L_1 - L_2} + \frac{c_4^*}{L_1 - L_2} - \frac{c_5^*}{L_2} \right) + \frac{\beta c_6^*}{L_2(1+\lambda A_2)}{}_2F_1^3 + \frac{c_1}{L_1 - L_2} - \frac{A_2}{L_2}, \end{aligned}$$
(40)

where \(_2F_1^3 = {}_2 F_1\left( 1, -L_2/L_1; 1-L_2/L_1; \frac{-\lambda c_1}{1+ \lambda A_2}\right) \). Therefore, using (30), (38) and (40) we obtain an explicit solution for \(M^*\),

$$\begin{aligned} M^*= & {} \frac{k}{L_1-L_2}\left( \frac{S_2}{L_2} - \frac{c_2}{L_1-L_2}-\frac{2}{L_2 \xi _2} + \frac{2 N_1 \xi _1}{L_2(\xi _1 A_2 +1)} {}_2F_1^1+ \frac{2 N_2 \xi _1}{L_2(\xi _2 S_2 +1)} {}_2F_1^2 \right) \nonumber \\&+ \frac{L_1 - A_{22}}{(L_1 - L_2) A_{21}} \left( -\beta \left( \frac{c_3^*}{2 L_1 - L_2}+ \frac{c_4^*}{L_1 - L_2} - \frac{c_5^*}{L_2} \right) +\frac{\beta c_6^*}{L_2(1+\lambda A_2)}{}_2F_1^3\right. \nonumber \\&\left. + \frac{c_1}{L_1 - L_2} - \frac{A_2}{L_2} \right) , \end{aligned}$$
(41)

where the constants and hypergeometric functions were specified earlier.

1.4 Linear and Quadratic Approximation of \(M^*\)

We take a linear and quadratic portion of \(M^*\) in order to more easily ascertain the effects of the system parameters. Using the expansion for the hypergeometric function, and noting that the untransformed stable manifold will intersect (0, 0), we remove all nonlinear terms and rewrite \(M^*\) as \(y_2 = m y_1\), where m is the slope of the line \(y_2\) to obtain

$$\begin{aligned} y_2 = \frac{-y_1}{(L_1 - L_2)^2} c_7 , \end{aligned}$$
(42)

where \(c_7\) is the constant

$$\begin{aligned} \begin{aligned} c_7 =&\frac{2 N_1 \xi _1^2 A_{21} k}{(\xi _1 A_2+1)^2} + \frac{2 N_2 \xi _1 \xi _2 k (L_1 -A_{22})}{(\xi _2 S_2 +1)^2} \\&- (L_1 - A_{22}) + \frac{L_1 -A_{22}}{A_{21}} \left( -\beta c_4^{**} + A_{21} + \frac{\beta c_{6}^{**} A_{21}\lambda }{ (1+\lambda A_2)^2 }\right) , \end{aligned} \end{aligned}$$
(43)

where \(c_4^{**} = c_4^*/y_1\) and \(c_6^{**} = c_6^*/y_1\). Next, since \((S^*, a^*) = \mathbf {x} = \mathbf {Cy}\), we can obtain

$$\begin{aligned} a^* = S^* \left( \frac{(L_1 -L_2)^2 - c_7}{(L_1 - A_{22})(L_1 - L_2)^2+ (-L_2 + A_{22}) c_7} \right) A_{21}. \end{aligned}$$

Keeping all quadratic terms, we obtain

$$\begin{aligned} y_2 = \frac{-(y_1)^2}{(L_1-L_2)(2L_1 - L_2)} c_8 - \frac{-y_1}{(L_1 - L_2)^2} c_7, \end{aligned}$$
(44)

where

$$\begin{aligned} c_8= & {} -2\xi _1\left( \frac{N_1 \xi _1^2kA_{21}^2}{(\xi _1 A_2 +1)^3} +\frac{ N_2 \xi _2^2 (L_1 - A_{22})^2}{(\xi _2 S_2+1)^3} \right) +\nonumber \\&\frac{L_1 - A_{22}}{A_{21}}\left( \frac{-\beta }{\lambda } A_{21} (L_1 - A_{22}) - \frac{\beta c_6^{**}A_{21}^2\lambda ^2}{(1+\lambda A_2)^3} \right) . \end{aligned}$$

The system can be solved for \(x = (S^*,a^*)\) using the quadratic formula.

In Fig. 1, we plot \(M^*\), \(M^*_l\) and \(M^*_q\) for specific parameter values in the original coordinate system (Sa). To plot \(M^*\) and \(M^*_q\) in the original coordinate system (Sa), we input a discreet set of values for \(y_1\) and use Eqs. (41) or (44), respectively, to find \(y_2\). We can then find \((S^*,a^*) = \mathbf {C^{-1}y}\) and hence \((S,a) = (S^*+S_2,a^*+A_2)\). To plot \(M^*_l\) in the original coordinate system (Sa), we directly find \((S^*,a^*)\) using Eq. (42) and translate to (Sa). To simplify notation, when we refer to \(M^*\), \(M^*_l\) and \(M^*_q\) in the main text, we are referring to these functions after coordinate transformation to (Sa).

Appendix 2: Calculation of the Coefficient of Determination, \(R^2\)

Here, we briefly describe the calculation of the coefficient of determination, or \(R^2\), as a measure of the goodness of fit of a regression model to the data. One can find more in depth development and analysis of \(R^2\) in Greene (2003).

The coefficient of determination is calculated as follows. Define the dependent variables as \(\{y_i\}_{i=1}^n\) (in our case, the \(y_i\) correspond to the values of \(A_I\) for a given parameter input); taking \(\bar{y} = \sum _{i} y_i / n\), we define the total variation in y as

$$\begin{aligned} SS_{t} = \sum _{i} (y_i - \bar{y})^2, \end{aligned}$$

which is just the sum of squared deviations. For each \(y_i\), we associate a \(b_i\), which is the value of the regression equation at independent variable \(x_i\). We similarly define the residual sum of squares as

$$\begin{aligned} SS_{res} = \sum _{i} (y_i - b_i)^2. \end{aligned}$$

The unadjusted \(R^2\) is calculated as

$$\begin{aligned} R^2 = 1- \frac{SS_{res}}{SS_{t}}. \end{aligned}$$

Note that if the data perfectly fit the model (i.e., \(y_i = b_i\) \(\forall i\)), then \(R^2=1\), indicating that a model with a perfect fit to the data has \(R^2=1\), and decreases to 0 as the goodness of fit is reduced. The adjusted \(R^2\), \(\bar{R^2}\), corrects to an increase in \(R^2\) that can occur due to incorporation of additional degrees of freedom into a model and thus should be used in lieu of \(R^2\) when comparing goodness of fit between models with different degrees of freedom. It is defined as

$$\begin{aligned} \bar{R^2} = 1-\frac{SS_{res}/(n-d)}{SS_{t}/(n-1)}, \end{aligned}$$

where n is the total number of observations, d is the number of regression coefficients, \(n-d\) is the degrees of freedom of \(SS_{res}\), and \(n-1\) is the degrees of freedom of \(SS_{t}\). In the main text, the adjusted \(R^2\) is presented without the bar notation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konstorum, A., Hillen, T. & Lowengrub, J. Feedback Regulation in a Cancer Stem Cell Model can Cause an Allee Effect. Bull Math Biol 78, 754–785 (2016). https://doi.org/10.1007/s11538-016-0161-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-016-0161-5

Keywords

Navigation